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Extended Abstract

1 Introduction

In economics and applied game theory, the most widely used solution concept for
extensive-form games is sequential equilibrium, introduced by Kreps and Wilson
[8]. Given an extensive-form game, an assessment is a pair (σ, µ), where σ is a
behavior strategy profile (which gives, for every information set, a probability
distribution over the choices at that information set) and µ is a system of beliefs
(which gives, for every information set, a probability distribution over the nodes
that constitute that information set). A sequential equilibrium is an assessment
which satisfies two properties: sequential rationality and consistency. Sequential
rationality requires that, at each information set, the strategy of the player who
moves there be optimal given the player’s beliefs (as captured by the relevant
part of µ) and the strategies of the other players. While sequential rationality
has a clear conceptual content, the notion of consistency is purely technical.
An assessment (σ, µ) is consistent if there is an infinite sequence

〈
σ1, ..., σm, ...

〉

of completely mixed strategy profiles (that is, every choice is assigned positive
probability) such that, letting µm be the unique system of beliefs derived from
σm by using Bayes’ rule, limm→∞(σ

m, µm) = (σ, µ). Kreps and Wilson pro-
posed the notion of consistent assessment as an attempt to capture the concept
of “minimal” belief revision. A number of authors have tried to shed light on
the technical notion of consistent assessment by relating it to more intuitive
concepts, such as “structural consistency” ([9]), “generally reasonable extended
assessment” ([6]), “stochastic independence” ([2], [7]).1

In this paper we provide a purely qualitative characterization of consistent
assessments in terms of the AGM theory of belief revision [1], through the notion
of AGM-consistent choice frame. For the purpose of this extended abstract we
introduce several simplifying assumptions. The general case and the proofs of
all the results can be found in the full paper [3].

1Perea et al [11] offer an algebraic characterization of consistent assessments
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2 Choice frames and AGM-consistent beliefs

We start with a brief review of the notion of rationalizable choice frame and its
relationship to the AGM theory of belief revision.

Definition 1 A choice frame is a triple 〈Ω, E, f〉 where
Ω is a non-empty set of states; subsets of Ω are called events.
E ⊆ 2Ω is a collection of events such that ∅ /∈ E and Ω ∈ E.
f : E → 2Ω is a function that associates with every event E ∈ E an event

f(E) satisfying the following properties: (1) f(E) ⊆ E and (2) f(E) �= ∅.

In rational choice theory a set E ∈ E is interpreted as a set of available
alternatives and f(E) is interpreted as the subset of E which consists of the
chosen alternatives. In our case, we think of the elements of E as possible items
of information and the interpretation of f(E) is that, if informed that event E
has occurred, the agent considers as possible all and only the states in f(E).
The set f(Ω) is interpreted as the states that are initially considered possible.

Note that in the literature (see, for example [12]) it is common to impose
some structure on the collection of events E (for example, that it be closed
under finite unions). On the contrary, we allow E to be an arbitrary subset of
2Ω and typically think of E as containing only a small number of events. This
is typically the case in extensive-form games, as shown in the following section.

In order to interpret a choice frame 〈Ω, E, f〉 in terms of belief revision we
need to add a valuation V : S → 2Ω that associates with every atomic formula
p ∈ S (in a given propositional language) the set of states at which p is true.
The quadruple 〈Ω, E, f, V 〉 is called a model (or an interpretation) of 〈Ω, E, f〉.
Given a model M = 〈Ω, E, f, V 〉, truth of an arbitrary formula at a state is
defined recursively as follows (ω |=M φ means that formula φ is true at state ω
in model M): (1) for p ∈ S, ω |=M p if and only if ω ∈ V (p), (2) ω |=M ¬φ
if and only if ω �|=M φ and (3) ω |=M (φ ∨ ψ) if and only if either ω |=M φ
or ω |=M ψ (or both). The truth set of formula φ in model M is denoted by
‖φ‖

M
, that is, ‖φ‖

M
= {ω ∈ Ω : ω |=M φ}.

Given a model M = 〈Ω, E, f, V 〉 we say that

• the agent initially believes that ψ if and only if f(Ω) ⊆ ‖ψ‖
M
,

• the agent believes that ψ upon learning that φ if and only if (1) ‖φ‖
M
∈ E

and (2) f(‖φ‖
M
) ⊆ ‖ψ‖

M
.

Accordingly, we can associate with every modelM a (partial) belief revision
function as follows (to simplify the notation we will drop the subscriptM). Let

K = {φ ∈ Φ : f(Ω) ⊆ ‖φ‖} ,
Ψ = {φ ∈ Φ : ‖φ‖ ∈ E} ,
BK : Ψ→ 2Φ given by BK(φ) = {ψ ∈ Φ : f(‖φ‖) ⊆ ‖ψ‖} .

(1)

Thus K is the initial belief set and, for every item of information φ ∈ Ψ,
BK(φ) is the revised belief set.
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Definition 2 A choice frame 〈Ω, E, f〉 is AGM-consistent if, for every model
M = 〈Ω, E , f, V 〉 based on it, the (partial) belief revision function BK associated
with M (see (1)) can be extended to a full-domain belief revision function that
satisfies the AGM postulates.2

Recall that a binary relation � on Ω is a total pre-order if it is complete
(∀ω, ω′ ∈ Ω, either ω � ω′ or ω′ � ω) and transitive (∀ω, ω′, ω′′ ∈ Ω, if ω � ω′

and ω′ � ω′′ then ω � ω′′). Given a total pre-order � of Ω and an event E ⊆ Ω,
let Min� E = {ω ∈ E : ω � ω′,∀ω′ ∈ E}.

Definition 3 A choice frame 〈Ω,E , f〉 is rationalizable if there exists a total
pre-order � on Ω such that, for every E ∈ E, f(E) =Min� E.

The interpretation of ω � ω′ is that state ω is at least as plausible as state
ω′. Thus in a rationalizable choice frame 〈Ω, E, f〉, for every E ∈ E, f(E) is the
set of most plausible states in E. The following proposition is proved in [5]:

Proposition 4 Let 〈Ω, E, f〉 be a choice frame where Ω is finite. Then 〈Ω, E, f〉
is AGM-consistent if and only if it is rationalizable

On the basis of Proposition 4, rationalizable choice frames can be viewed as
providing a semantics for one-stage partial belief revision functions that obey the
AGM postulates. In the next section we use choice frames to analyze extensive-
form games.

3 Choice frames in extensive-form games

We adopt the history-based definition of extensive-form game (see, for example,
[10]). For the purpose of this extended abstract we restrict attention to games
without chance moves. If A is a set, we denote by A∗ the set of finite sequences
in A. If h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ j ≤ k, the sequence h′ = 〈a1, ..., aj〉 is
called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the sequence
〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form3 is a tuple
〈
A,H,N,P, {≈i}i∈N

〉
where:

• A is a finite set of actions.

• H ⊆ A∗ is a finite set of histories which is closed under prefixes (that is,
if h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The empty history
〈 〉 is denoted by ∅ and is an element of H. A history h ∈ H such that,
for every a ∈ A, ha /∈ H, is called a terminal history. The set of terminal
histories is denoted by Z. Let D = H \ Z denote the set of non-terminal

2Because of space limitations we shall not review the AGM postulates which define the
class of full AGM revision functions. See [3] for details.

3Given an extensive form, one obtains an extensive game by adding, for every player
i ∈ N , a utility or payoff function Ui : Z → R (where R denotes the set of real numbers and
Z the set of terminal histories).
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or decision histories. For every history h ∈ H, we denote by A(h) the
set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}. Thus
A(h) �= ∅ if and only if h ∈ D.

• N = {1, ...n} is a set of players.

• P : D → N is a function that assigns a player to each non-terminal
history. Thus P (h) is the player who moves at history h. For every
i ∈ N , let Di = P−1(i) be the set of histories assigned to player i. Thus
{D1, ...,Dn} is a partition of D.

• For each player i ∈ N , ≈i is an equivalence relation on Di. The interpre-
tation of h ≈i h

′ is that, when choosing an action at history h ∈ Di, player
i does not know whether she is moving at h or at h′. The equivalence class
of h ∈ Di is denoted by Ii(h) and is called an information set of player
i; thus Ii(h) = {h′ ∈ Di : h ≈i h

′}. The following restriction applies:
if h′ ∈ Ii(h) then A(h′) = A(h), that is, the set of actions available to a
player is the same at any two histories that belong to the same information
set of that player.

• The following property, known as perfect recall, is satisfied: for every
player i ∈ N , if h1, h2 ∈ Di, a ∈ A(h1) and h1a is a prefix of h2 then for
every h′ ∈ Ii(h2) there exists an h ∈ Ii(h1) such that ha is a prefix of h′.
Intuitively, perfect recall requires a player to remember what she knew in
the past and what actions she took previously.

1

2

3
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Figure 1

Figure 1 shows an extensive form where A = {a, b, c, d, e, f, g, h,m, n}, H =
D∪Z with (to simplify the notation we write a instead of 〈a〉, ac instead of 〈a, c〉,
etc.) D = {∅, a, b, ac, ad, acf, ade, adf}, Z = {ace, acfg, acfh, adeg, adeh, adfm,
adfn, bm, bn}, A(∅) = {a, b}, A(a) = {c, d}, A(ac) = A(ad) = {e, f}, A(acf) =
A(ade) = {g, h}, A(adf) = A(b) = {m,n}, N = {1, 2, 3, 4}, P (∅) = 1, P (a) = 2,
P (ac) = P (ad) = 3, P (acf) = P (ade) = P (adf) = P (b) = 4, ≈1= {(∅, ∅)}, ≈2=
{(a, a)}, ≈3= {(ac, ac), (ac, ad), (ad, ac), (ad, ad)} and≈4= {(acf, acf), (acf, ade),
(ade, acf), (ade, ade), (adf, adf), (adf, b), (b, adf), (b, b)}. The information sets

4



containing more than one history are shown as rounded rectangles. Thus, for
example, I4(b) = {adf, b}. The root of the tree represents the empty history ∅.

For the purpose of this extended abstract we restrict attention to the class of
extensive forms where no player moves more than once along any history. That
is, for every history h, if h1 and h2 are prefixes of h with P (h1) = P (h2) then
h1 = h2 (recall that P (h) is the player who moves at h). The extensive form
represented in Figure 1 satisfies this property.

Choice frames can be used to represent, for every player, her initial beliefs
and her disposition to change those beliefs when it is her turn to move. Given
an extensive form, we can associate with every i ∈ N a choice frame 〈Ω, Ei, fi〉
as follows: Ω = H (the set of histories), E ∈ Ei if and only if either E = H or
E consists of an information set of player i together with all the continuation
histories. Recall that, if h ∈ Di, player i’s information set that contains h is
denoted by Ii(h); that is, Ii(h) = {h

′ ∈ H : h′ ≈i h}. We shall denote by $Ii(h)
the set Ii(h) together with the continuation histories: for h ∈ Di,

$Ii(h) = {x ∈ H : ∃h′ ∈ Ii(h) such that h′ is a prefix of x}. (2)

Thus

Ei = {H} ∪ {$Ii(h) : h ∈ Di}. (3)

For example, in the extensive form of Figure 1, E4 = {H,E1, E2}, where
E1 = {acf, ade, acfg, acfh, adeg, adeh} and E2 = {adf, b, adfm, adfn, bm, bn}.

Finally, the function fi provides conditional beliefs about past and future
moves. For example, in the extensive form of Figure 1 one possibility for Player
4 is: f4(H) = {a, ac, ace}, f4(E1) = {acf, acfh} and f4(E2) = {b, bm}, where
E1 and E2 are as given above. The interpretation of this is that Player 4 initially
believes that Player 1 will play a, Player 2 will follow with c and Player 3 with e
(so that Player 4 does not expect to be asked to make any choices). If informed
that she is at her information set on the left then she would continue to believe
that Player 1 played a and Player 2 followed with c, but she would now believe
that Player 3 chose f and she herself plans to choose h. If informed that she is
at her information set on the right then she would believe that Player 1 played
b and she herself plans to choose m.

If we assume that the choice frame of player i is AGM consistent, then, by
Proposition 4, there exists a total pre-order �i on H that rationalizes fi (that
is, for every E ∈ Ei, fi(E) =Min�i

E).
What are natural properties to impose on these total pre-orders, that is,

on the associated beliefs? We introduce four properties and show that they
characterize the notion of consistent assessment.

The first property expresses the notion of agreement of beliefs, in the sense
that the players share the same initial beliefs and the same disposition to change
those beliefs in response to the same information:4

4This property can be viewed as an expression of the notion of a “common prior” (see, for
example, [4]), which is pervasive in game theory.
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∃ � ⊆ H ×H : ∀i ∈ N, �i = � . (P1)

Note that P1 is consistent with the players holding different beliefs during any
particular play of the game, since they will typically receive different informa-
tion.

The remaining properties will be stated in terms of the common pre-order
� given by P1. Recall that the interpretation of h � h′ is that history h is at
least as plausible as history h′. We write h ∼ h′ (with the interpretation that h
is as plausible as h′) as a short-hand for “h � h′ and h′ � h”, and h ≺ h′ (with
the interpretation that h is more plausible than h′) as a short-hand for “h � h′

and h′ �� h”.
The second property says that adding an action to a history h cannot yield

a more plausible history than h itself:

∀h ∈ D, ∀a ∈ A(h), h � ha. (P2)

The third property says that at every decision history h there is some action
a such that adding a to h yields a history which is at least as plausible as h;
furthermore, any such action a performs the same role with any other history
that belongs to the same information set:

∀i ∈ N,∀h ∈ Di, (1) ∃a ∈ A(h) : ha � h and
(2) ∀a ∈ A(h), ∀h′ ∈ Ii(h), if ha � h then h′a � h′.

(P3)

Remark 5 It follows from Properties P2 and P3 that, for every decision his-
tory h, there is at least one action a at h such that, for every h′ in the same
information set as h, h′a is as plausible as h′. We call such actions plausibility
preserving.

A function F : H → N (where N denotes the set of natural numbers) is
an integer-valued representation of � if F (∅) = 0 and, ∀h, h′ ∈ H, h � h′ if
and only if F (h) ≤ F (h′). Let R be the set of integer-valued representations of
�. Since H is finite, R �= ∅. We call an integer-valued representation F of �
action-consistent if,

∀i ∈ N, ∀h, h′ ∈ Di, ∀a ∈ A(h), if h′ ∈ Ii(h) then

F (ha)− F (h) = F (h′a)− F (h′).
(4)

For example, consider the extensive form represented in Figure 2 and the
following total pre-order: ∅ ∼ a ≺ b ∼ be ≺ bf ≺ c ∼ ce ≺ d ≺ cf . The first
column in Table 1 reproduces this total pre-order with the convention that if
x and y are on the same line, then x ∼ y and if x is above y then x ≺ y; the
second and third columns give two integer-valued representations of �, F1 and
F2. F1 is not action-consistent, since c ∈ I(b) and F1(bf) − F1(b) = 2 − 1 = 1
while F1(cf)− F1(c) = 5− 3 = 2. On the other hand, F2 is action-consistent.
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Figure 2

� F1 F2
∅, a 0 0
b, be 1 1
bf 2 3

c, ce 3 4
d 4 5
cf 5 6
Table 1

The fourth (and last) property says that among the integer-valued represen-
tations of � there is at least one which is action-consistent:

There exists an F ∈ R which is action-consistent. (P4)

Note that Properties P2-P4 are independent of each other.

If the beliefs of player i are rationalized by a total pre-order � on H,
then the following holds: if the play of the game reaches history h ∈ Di

then player i receives information $Ii(h) and revises her previous beliefs to

fi($Ii(h)) = Min� $Ii(h), that is, the histories that are most plausible given
her information constitute her revised beliefs.

Before we proceed to our main result, we recall in more detail the notion of
sequential equilibrium ([8]). Given an extensive form, a pure strategy of player
i ∈ N is a function that associates with every information set of player i a
choice at that information set, that is, a function si : Di → A such that (1)
si(h) ∈ A(h) and (2) if h′ ∈ Ii(h) then si(h′) = si(h). For example, one of
the pure strategies of Player 4 in the extensive form illustrated in Figure 1 is
s4(acf) = s4(ade) = g, s4(adf) = s4(b) = m. A behavior strategy of player i is
a collection of probability distributions, one for each information set, over the
actions available at that information set; that is, a function σi : Di → ∆(A)
(where ∆(A) denotes the set of probability distributions over A) such that
(1) σi(h) is a probability distribution over A(h) and (2) if h′ ∈ Ii(h) then
σi(h

′) = σi(h). We denote by σi(h)(a) the probability assigned to a ∈ A(h) by
σi(h). Note that a pure strategy is a special case of a behavior strategy where
each probability distribution is degenerate. A behavior strategy σi of player i
is completely mixed if, for every h ∈ Di and for every a ∈ A(h), σi(h)(a) > 0. A
behavior strategy profile is an n-tuple σ = (σ1, ..., σn) where, for every i ∈ N ,
σi is a behavior strategy of player i.

A system of beliefs, is a collection of probability distributions, one for every
information set, over the elements of that information set, that is, a function
µ : D → ∆(H) such that (1) if h ∈ Di then µ(h) is a probability distribution
over Ii(h) and (2) if h ∈ Di and h′ ∈ Ii(h) then µ(h) = µ(h′). Note that a
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completely mixed behavior strategy profile yields, using Bayes’ rule, a unique
system of beliefs.

An assessment is a pair (σ,µ) where σ is a behavior strategy profile and µ
is a system of beliefs. An assessment (σ, µ) is consistent if there is an infinite
sequence

〈
σ1, ..., σm, ...

〉
of completely mixed strategy profiles such that, letting

µm be the unique system of beliefs obtained from σm by using Bayes’ rule,
limm→∞(σ

m, µm) = (σ, µ).
Kreps and Wilson [8] proposed the notion of consistent assessment as an

attempt to capture the concept of “minimal” belief revision. The following
proposition provides a characterization of consistent assessments in terms of
the AGM theory of belief revision, through the notion of AGM-consistency of
choice frames. Sequential rationality is discussed in Section 5.

Given an extensive form, we say that a profile {〈Ω, Ei, fi〉}i∈N of AGM-
consistent choice frames (where Ω = H and Ei is given by (3)) satisfies properties
P1-P4 if the collection of total pre-orders {�i}i∈N that rationalize {〈Ω, Ei, fi〉}i∈N
(whose existence is guaranteed by Proposition 4) satisfies properties P1-P4 (that
is, there exists a common total pre-order � on H that rationalizes those choice
frames and satisfies properties P2− P4).

Proposition 6 Fix an extensive form. Then
(a) If the players’ initial beliefs and disposition to revise those beliefs are

represented by a profile of AGM-consistent choice frames that satisfies properties
P1-P4 then there exists a consistent assessment (σ, µ) such that (letting � be
a total pre-order on H that rationalizes those choice frames), for all i ∈ N ,
h ∈ Di and a ∈ A(h), (1) σi(h)(a) > 0 if and only if h ∼ ha and (2) µ(h) > 0

if and only if h ∈Min� $Ii(h);5

(b) if (σ, µ) is a consistent assessment then there exists a profile of AGM-
consistent choice frames that satisfies properties P1-P4 such that (letting � be
a total pre-order on H that rationalizes those choice frames), for every i ∈ N ,
h ∈ Di and a ∈ A(h), (1) h ∼ ha if and only if σi(h)(a) > 0 and (2) h ∈

Min� $Ii(h) if and only if µ(h) > 0.

4 General extensive games and iterated belief

revision

In an arbitrary extensive form there may be players who move more than once
along some histories. If i is such a player, then the set Ei defined above (see (3))
will contain two sets E and F such that, along some history, player i receives
first information E and then, at a later moment, information F . Because of
the property of perfect recall, in such a situation it will the case that F ⊆ E
(for every player i ∈ N and for every h, h′ ∈ Di, if h is a prefix of h′ then

5Recall - see (2) - that �Ii(h) is the information set that contains h together with the
continuation histories and that if 〈Ω, Ei, fi〉 is the choice frame of player i then Ω = H and

Ei = {H} ∪ {�Ii(h) : h ∈ Di} (see (3)).
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$Ii(h′) ⊆ $Ii(h)). We call this property information refinement. Because of the
possibility of sequential informational inputs, we are outside the scope of one-
shot belief revision and it is no longer sufficient to appeal to AGM consistency in
order to guarantee the existence of a total pre-order that rationalizes the beliefs
of a player. In the full version of the paper [3] it is argued that, within the
context of information refinement, rationalizability of the choice frame of each
player captures a basic principle of belief revision that is common to the may
theories of iterated belief revision that have been proposed in the literature. The
full paper contains the extension of Proposition 6 to arbitrary extensive-form
games.

5 Sequential rationality, pure sequential equilib-

ria, backward induction

A sequential equilibrium is an assessment (σ, µ) which is consistent and sequen-
tially rational. Sequential rationality requires that - at each information set - the
strategy of each player be optimal starting from there according to the player’s
beliefs over the nodes in that information set (as captured by the relevant part
of µ) and the strategies of the other players. Conceptually, little is gained by
expressing sequential rationality in terms of the total pre-order underlying the
consistent assessment (σ, µ). However, there is one case where sequential ratio-
nality can be expressed very simply and that is the case where the restriction
of the total pre-order � to the set Z of terminal histories is antisymmetric:

if z, z′ ∈ Z, and z ∼ z′ then z = z′. (P5)

Lemma 7 Let � be a total pre-order on H that satisfies Properties P2, P3
and P5. Then, for every history h ∈ H, there is a unique terminal history z
such that h ∼ z. Call this terminal history z(h) (if h ∈ Z then z(h) = h).
Furthermore, for every decision history h ∈ D, (a) there is a unique action

a ∈ A(h) such that h ∼ ha and (b) for all h′ ∈ $Ii(h), if h ∼ h′ then h is a prefix
of h′.

Under the hypotheses of Lemma 7, sequential rationality can be expressed
as follows (recall - see Footnote 3 - that, for every player i ∈ N , Ui : Z → R is
i’s payoff function):

∀i ∈ N,∀h ∈ Di,∀a ∈ A(h), Ui(z(h)) ≥ Ui(z(ha)). (P6)

Call a sequential equilibrium (σ, µ) pure if the strategy σi of each player
i ∈ N is a pure strategy and µ consists of degenerate probability distributions
(that is, if h ∈ Di and h′ ∈ Ii(h) then either µ(h)(h′) = 0 or µ(h)(h′) = 1).

Proposition 8 Fix an extensive-form game without chance moves. Then,
(a) If the players’ beliefs and belief revision policies are represented by a

profile of rationalizable choice frames that satisfies properties P1-P6 then the
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assessment (σ,µ) given by (letting � be a total pre-order on H that rationalizes
those choice frames), for all i ∈ N , h ∈ Di and a ∈ A(h), (1) σi(h)(a) > 0 if

and only if h ∼ ha and (2) µ(h) > 0 if and only if h ∈ Min� $Ii(h), is a pure
sequential equilibrium.

(b) if (σ, µ) is a pure sequential equilibrium then there exists a profile of
rationalizable choice frames that satisfies properties P1-P6 such that (letting
� be a total pre-order on H that rationalizes those choice frames), for every
i ∈ N, h ∈ Di and a ∈ A(h), (1) h ∼ ha if and only if σi(h)(a) = 1 and (2)

h ∈Min� $Ii(h) if and only if µ(h) = 1.

Note that, since we ruled out chance moves, Proposition 8 does not require
the payoff function Ui of player i to satisfy the von Neumann-Morgenstern
axioms of expected utility; indeed, it could be an ordinal payoff function (that
is, a numerical representation of a total pre-order over Z expressing player i’s
preferences over the elements of Z).

An extensive form has perfect information if every information set is a single-
ton. The solution concept that is most commonly used for perfect-information
games is that of backward induction (for a review of the backward-induction
algorithm see the full paper [3]). In perfect-information games Property P4 is
trivially satisfied, since h′ ∈ Ii(h) implies that h′ = h. We now show that, for
every perfect-information game, there is a one-to-one correspondence between
the set of backward-induction solutions and the set of total pre-orders on H that
satisfy properties P2, P3 and the following property, which is a generalization of
P6. First of all some notation. Fix a total pre-order � on H. For every decision
history h ∈ D, let A0(h) = {a ∈ A(h) : h ∼ ha} and let Z(h) = {z ∈ Z : z ∼ ha
for some a ∈ A0(h)}. If � satisfies Properties P2 and P3 then A0(h) �= ∅ and
Z(h) �= ∅. We can now introduce the generalization of P6:

∀i ∈ N, ∀h ∈ Di, ∀z ∈ Z(h), ∀a ∈ A(h), ∀z′ ∈ Z(ha), Ui(z) ≥ Ui(z
′). (P7)

Property P7 says that if h is a decision history of player i then the utility
of any terminal history reached from h by following only plausibility preserving
actions is not less than the utility of a terminal node reached by taking an
arbitrary action a at h and then continuing from ha by following only plausibility
preserving actions.

Proposition 9 Fix an arbitrary finite perfect-information game. There is a
one-to-one correspondence between the set of backward-induction solutions and
the set of total pre-orders on H that satisfy properties P2, P3 and P7.

Proposition 9 thus provides a characterization of backward induction in
terms of beliefs and belief revision policies that are represented by profiles of
rationalizable choice frames that satisfy Properties P1-P3 and P7.
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