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1 Introduction

Traditional epistemic logic can be seen as a particular branch of modal logic. Its semantics is defined
in terms of Kripke models, and philosophical principles about knowledge (e.g. factivity: Kϕ→ ϕ)
are shown to correspond to properties of the epistemic accessibility relation (e.g. reflexivity).
By adding another (doxastic) accessibility relation, also belief can be treated in this framework.
Belief is not assumed to be factive, but at least consistent (¬B⊥), which corresponds to requiring
the doxastic accessibility relation to be serial instead of reflexive. In this extended framework,
one can study the interaction between knowledge and belief, such as the validity of Kϕ → Bϕ
[11], [12]. Furthermore, since this framework is still ‘just’ a (multi-)modal logic, it inherits the
mathematically well-developed model theory of modal logic.

This framework can also be used to model the interaction of (factive) knowledge with public
announcements [10],[13] and other dynamic epistemic phenomena [1], [2]. The dynamics of be-
lief (and other non-factive attitudes), however, cannot be modeled in this framework: if an agent
receives a true piece of information ϕ while previously believing that ¬ϕ, then this agent is pre-
dicted to go insane and start believing everything (rather than performing a realistic process of
belief revision) — thus contradicting the consistency requirement about belief. For more details
we refer the reader to section 3.1 of [6]. To remedy this problem, epistemic plausibility models
have been introduced (technical details will be presented later). In these models, one can again
study knowledge, belief (and even other cognitive propositional attitudes), and their various inter-
actions. Furthermore, this framework provides a realistic model of various dynamic phenomena,
and thus solves the main problem of the previous approach. A prime example of the use of these
models in game theory is the treatment in [4] of the backward induction paradox. Because epis-
temic plausibility models are much richer structures than Kripke models, however, they do not
straightforwardly inherit the model-theoretical results of modal logic. Therefore, while epistemic
plausibility structures are well-suited for modeling purposes, an extensive investigation of their
model theory has been lacking so far.

The aim of the present paper is to fill exactly this gap, by initiating a systematic exploration
of the model theory of epistemic plausibility models. Like in ‘ordinary’ modal logic, the focus will
be on the notion of bisimulation — it turns out that finding the right generalization of this notion
is not a trivial task. In Section 2, we introduce epistemic plausibility models and discuss some
important operators which can be interpreted on such models, and their dynamic behaviour. In
Section 3, we define various notions of bisimulations (parametrized by a language L) and show that
L-bisimilarity implies L-equivalence. We establish a Hennesy-Milner type theorem, and prove two
undefinability results — thus shedding some light on the formal relationships between the various
operators that can be interpreted on epistemic plausibility models. The notion of bisimulation
for conditional belief, however, turns out to be unsatisfactory for several reasons. In Section 4,
we discuss these reasons and explore two possible solutions: adding a modality to the language,
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and putting extra constraints on the models. In Section 5, we establish some results about the
interaction between bisimulation and dynamic model changes.

From a broader perspective, this paper can be seen as a reaction against a widespread trend
in the technical modal logic literature (already since the 1960’s), viz. the inclination to focus
almost exclusively on the model theory of ‘simple’ local modalities that are interpreted by means
of universal/existential quantification over some unordered set of accessible states. Despite their
central importance in game theory, AI, philosophy, and linguistics, more complex modalities (which
are interpreted by means of ‘jumping’ to the minimal states according to some plausibility ordering)
have mainly been neglected from the model-theoretical perspective, without any good reason. This
paper aims to show also these more complex (application-oriented) modalities can give rise to a
relatively well-behaved and mathematically elegant metatheory.1

2 Epistemic plausibility models

We now introduce epistemic plausibility models. Let G be a non-empty set, whose elements will
be called agents. Throughout this paper, we will keep the set of agents fixed, so that it can almost
always be left implicit. Likewise, we assume that Prop is a (countably infinite) set of proposition
letters, which will also be kept fixed throughout the paper.

Definition 1. An epistemic plausibility model is a structure M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉,
where W is a non-empty set of states, ∼i⊆ W ×W is the epistemic accessibility relation for
agent i, ≤i,w ⊆ W ×W is the plausibility order for agent i at state w, and V : Prop → ℘(W ) is
a valuation.

As usual, w ∼i v is to be read as: “agent i cannot epistemically distinguish between states
w and v”. We assume this relation to be an equivalence relation. Furthermore, w ≤i,s v is to
be read as: “at state s, agent i considers w at least as plausible as v”. We take this relation to
be a well-founded pre-order. For each X ⊆ W , we define the set of ≤i,s-minimal elements as
Min≤i,s(X) := {x ∈ X | ∀y ∈ X : y ≤i,s x ⇒ x ≤i,s y}. That ≤i,s is a well-founded pre-order
means that it is reflexive and transitive, and that for each nonempty X ⊆ W also Min≤i,s(X)
is nonempty. Note that the relation ≤i,s is not only dependent on agents, but also on states: it
is possible for agent i to have different plausibility orderings at different states (from Section 4
onwards, more constraints will be placed on this state-dependency).

Various epistemic and doxastic notions can be interpreted on epistemic plausibility models. The
three most important ones are: (i) Kiϕ (i knows that ϕ), (ii) Bαi ϕ (i believes that ϕ, conditional on
α), and (iii) B+

i ϕ (i safely believes that ϕ). ‘Normal’ belief can be defined in terms of conditional
belief, by putting Biϕ := B>i ϕ. ‘Safe belief’ is the name given in [3] to a doxastic attitude
between belief and ‘full’ knowledge. This non-introspective attitude is sometimes called ‘defeasible
knowledge’; Stalnaker [14] even takes this operator to be a more faithful representation of our
‘everyday notion’ of knowledge than the full-fledged S5-type Ki-operator.

We abbreviate [w]∼i := {v ∈ W |w ∼i v} (the ∼i-equivalence class of state w ∈ W ). The
semantics for the notions above can now be stated as follows:

Definition 2. Consider an epistemic plausibility model M and state w; then

– M, w |= Kiϕ iff ∀v ∈ [w]∼i
: M, v |= ϕ

– M, w |= Bαi ϕ iff ∀v ∈W : v ∈ Min≤i,w ([[α]]M ∩ [w]∼i)⇒M, v |= ϕ

– M, w |= B+
i ϕ iff ∀v ∈ [w]∼i

: v ≤i,w w ⇒M, v |= ϕ

We now turn to the dynamics. In this paper, we will focus on two specific dynamic phenomena:
public announcement (hard information) and radical upgrade (soft information). Public announce-
ment of a formula ϕ in an epistemic plausibility model M simply removes all ¬ϕ-states from
1 In this extended abstract, all theorems, propositions and facts are stated without proof. The full version
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the model. Radical upgrade with ϕ, on the other hand, makes all ϕ-states more plausible than all
¬ϕ-states, and leaves everything within these two zones untouched. Formally, this looks as follows:

Definition 3. Consider an epistemic plausibility model M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and a
formula ϕ. We now define the following epistemic plausibility models:

– M!ϕ = 〈W !ϕ, {∼!ϕ
i }i∈G, {≤

!ϕ
i,w}w∈W

!ϕ

i∈G , V !ϕ〉, where
• W !ϕ = [[ϕ]]M, and V !ϕ(p) := V (p) ∩ [[ϕ]]M for any p ∈ Prop
• ∼!ϕ

i :=∼i ∩ ([[ϕ]]M × [[ϕ]]M) for any i ∈ G
• ≤!ϕ

i,w :=≤i,w ∩ ([[ϕ]]M × [[ϕ]]M) for any i ∈ G and w ∈W !ϕ

– M ⇑ ϕ = 〈W⇑ϕ, {∼⇑ϕi }i∈G, {≤
⇑ϕ
i,w}w∈W

⇑ϕ

i∈G , V ⇑ϕ〉, where
• W⇑ϕ := W , and V ⇑ϕ(p) := V (p) for any p ∈ Prop
• ∼⇑ϕi :=∼i for any i ∈ G
• ≤⇑ϕi,w :=

(
≤i,w ∩ ([[ϕ]]M × [[ϕ]]M)

)
∪

(
≤i,w ∩ ([[¬ϕ]]M × [[¬ϕ]]M)

)
∪

(
[[ϕ]]M × [[¬ϕ]]M

)
for any

i ∈ G and w ∈W⇑ϕ

In order to be able to talk about these new models in the object language, we add operators
[!ϕ] and [⇑ ϕ], thus obtaining the language L(K,Bc, B+, !,⇑). We now link up the models and
the language by defining the semantics for the two dynamic modalities. Note that since public
announcement is assumed to be truthful, it works with a precondition; this is not the case for
radical upgrade.

Definition 4. Consider an epistemic plausibility model M and state w; then

– M, w |= [!ϕ]ψ iff (if M, w |= ϕ then M!ϕ,w |= ψ)
– M, w |= [⇑ ϕ]ψ iff M ⇑ ϕ,w |= ψ

Finally, dynamic epistemic/doxastic logics are constructed using the well-known modular ap-
proach: (i) one starts by taking (an axiomatization of) some static base logic, (ii) then one adds
dynamic operators to this logic and (iii) finally, one provides a sound set of reduction axioms,
which allow each formula in the dynamic language to be rewritten as an equivalent formula in
the static language. Because of this final step, completeness of the dynamified logic is reduced to
completeness of the static base logic. It also shows that the dynamic language L(K,Bc, B+, !,⇑)
is equally expressive as the static language L(K,Bc, B+).

3 Bisimulation for epistemic plausibility models

We now start our investigation of the model theory of epistemic plausibility models. The focus will
be on the notion of bisimulation, which is also central in the model theory of Kripke models. Since
we want to explore bisimulation for various languages, we make it into a parametrized notion,
so that each language has its own notion of bisimulation, which ‘does what it needs to do, and
nothing more’.

Below are the definitions of K-bisimulation, B+-bisimulation and Bc-bisimulation. Since Ki

is just the universal modality for ∼i, the notion of K-bisimulation is that of regular bisimulation
from modal logic. The notion of B+-bisimulation is a straightforward generalization. The notion
of Bc-bisimulation, however, is much more intricate, since it involves universally quantifying over
all formulas of the language L(B+). We will return to this issue in later sections.

Definition 5. Given epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉 ; a relation Z ⊆W ×W ′ is a K-bisimulation iff

– if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p)
– if (w,w′) ∈ Z and w ∼i v, then there is a v′ ∈W ′ such that (v, v′) ∈ Z and w′ ∼′i v′
– if (w,w′) ∈ Z and w′ ∼′i v′, then there is a v ∈W such that (v, v′) ∈ Z and w ∼i v



Definition 6. Given epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉 ; a relation Z ⊆W ×W ′ is a B+-bisimulation iff

– if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p)
– if (w,w′) ∈ Z and w ∼i v and v ≤i,w w, then there is a v′ ∈ W ′ such that (v, v′) ∈ Z and
w′ ∼′i v′ and v′ ≤′i,w′ w′

– if (w,w′) ∈ Z and w′ ∼′i v′ and v′ ≤′i,w′ w′, then there is a v ∈ W such that (v, v′) ∈ Z and
w ∼i v and v ≤i,w w

Definition 7. Given epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉 ; a relation Z ⊆W ×W ′ is a Bc-bisimulation iff

– if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p)
– for all formulas α ∈ L(Bc): if (w,w′) ∈ Z and v ∈ Min≤i,w ([[α]]M ∩ [w]∼i), then there is a
v′ ∈W ′ such that (v, v′) ∈ Z and v′ ∈ Min≤′

i,w′
([[α]]M

′ ∩ [w′]∼′i)

– for all formulas α ∈ L(Bc): if (w,w′) ∈ Z and v′ ∈ Min≤′
i,w′

([[α]]M
′ ∩ [w′]∼′i), then there is a

v ∈W such that (v, v′) ∈ Z and v ∈ Min≤i,w
([[α]]M ∩ [w]∼i

)

The following theorem shows that these are the ‘right’ notions, since they allow us to establish
a characteristic feature of bisimulation: bisimilarity implies modal equivalence.

Theorem 1. Consider two epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and
M′ = 〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉, and a relation Z ⊆W ×W ′.

1. If Z is a K-bisimulation, then for all ϕ ∈ L(K) and for all (w,w′) ∈ Z, it holds that M, w |=
ϕ⇔M′, w′ |= ϕ.

2. If Z is a B+-bisimulation, then for all ϕ ∈ L(B+) and for all (w,w′) ∈ Z, it holds that
M, w |= ϕ⇔M′, w′ |= ϕ.

3. If Z is a Bc-bisimulation, then for all ϕ ∈ L(Bc) and for all (w,w′) ∈ Z, it holds that
M, w |= ϕ⇔M′, w′ |= ϕ.

Using these separate notions of bisimulations, we can now introduce bisimulations for languages
which have more than just one of the operators K/B+/Bc in a modular way (although conditional
belief complicates matters a little bit). Obviously, these combined notions lead to results analogous
to Theorem 1; we state just two of these as Theorem 2, for future reference.

Definition 8. Consider epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉 and a relation Z ⊆W ×W ′.

– Z is a {K,B+}-bisimulation iff Z is a K-bisimulation and a B+-bisimulation
– Z is a {K,Bc}-bisimulation iff Z is a K-bisimulation and a Bc-bisimulation, with the universal

quantifiers in Definition 7 ranging over L(K,Bc) (instead of just over L(Bc))
– Z is a {K,B+, Bc}-bisimulation iff Z is a K-bisimulation, a B+-bisimulation, and a Bc-

bisimulation, with the universal quantifiers in Definition 7 ranging over L(K,B+, Bc) (instead
of just over L(Bc))

Theorem 2. Consider two epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and
M′ = 〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉, and a relation Z ⊆W ×W ′.

1. If Z is a {K,Bc}-bisimulation, then for all ϕ ∈ L(K,Bc) and for all (w,w′) ∈ Z, it holds that
M, w |= ϕ⇔M′, w′ |= ϕ.

2. If Z is a {K,B+}-bisimulation, then for all ϕ ∈ L(K,B+) and for all (w,w′) ∈ Z, it holds
that M, w |= ϕ⇔M′, w′ |= ϕ.



One can also wonder about the converse direction of theorems such as Theorem 2: if M, w |=
ϕ ⇔ M′, w′ |= ϕ for all ϕ ∈ L(K,Bc), then is there always a {K,Bc}-bisimulation Z ⊆ W ×W ′
such that (w,w′) ∈ Z? One of the main results from the model theory of basic modal logic, viz. the
Hennesy-Milner theorem (cf. [7], Theorem 2.24) says that this question can be answered positively,
at least when the models are assumed to be image-finite. This theorem can easily be generalized
to epistemic plausibility models:

Definition 9. Consider an epistemic plausibility model M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉. We
say that M is image-finite if for all i ∈ G and all w ∈W , the set [w]∼i

is finite.

Theorem 3. Consider two image-finite models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉. Then for all states w ∈ W and w′ ∈ W ′, if M, w |= ϕ ⇔
M′, w′ |= ϕ for all ϕ ∈ L(K,Bc), then w and w′ are {K,Bc}-bisimilar.

Bisimulations are often used to establish L-equivalence of two models (for some language L).
Any aspect in which these two models do differ is then immediately seen to be undefinable in L.
The notions of bisimulation which have been introduced thus far allow us to prove the following
two undefinability results (among others). These results can be seen as tying up some loose ends,
in the sense that the results were expected, but not yet explicitly proved in the existing literature.

Proposition 1. Conditional belief cannot be defined in terms of knowledge and safe belief.2

Proposition 2. Safe belief cannot be defined in terms of knowledge and conditional belief.

4 Structural bisimulations

We already noted in the previous section that the notion of Bc-bisimulation introduced in Defi-
nition 7 is much more intricate than the other notions. We will now argue that this definition is
unsatisfactory for both theoretical and practical reasons.

On the theoretical level, since Definition 7 involves universal quantification over L(Bc), it is not
strictly structural. Rather than stating conditions on ∼i and ≤i,w (as is done in Definitions 5 and
6 of bisimulations for knowledge and safe belief), it essentially involves truth sets of (arbitrary)
formulas. A related issue is that this definition of bisimilarity for models cannot be turned into a
definition of bisimilarity for frames by simply dropping the ‘atoms’ clause (as can be done with
Definitions 5 and 6): it depends on truth sets of formulas ([[α]]M and [[α]]M

′
), and thus also on the

concrete valuations of the models M and M′.
Practically speaking, Definition 7 makes it often very difficult to prove that two given epistemic

plausibility models are actually Bc-bisimilar. In the appendix of [9], induction on the complexity
of α (with a cleverly strengthened induction hypothesis) is used to establish that the zig- and
zag-conditions of Definition 7 hold for all formulas α. However, this approach is geared towards
proving one particular Bc-bisimilarity result (about two artificially crafted models), and cannot
easily be generalized to the general case (proving Bc-bisimilarity of arbitrary models). Similar
remarks apply to the proof of our Proposition 2.

We will now propose two different solutions to this problem, and explore and compare their ad-
vantages and disadvantages. Both solutions involve reducing conditional belief to other modalities
which have more standard notions of bisimulation. The first approach involves both extending the
language and putting some mild constraints on the epistemic plausibility models. The second ap-
proach puts more heavy constraints on the models, but does not need to extend the language. Both
solutions have in common that we end up only needing fully structural notions of bisimulation,
without any universal quantification over formulas.

2 This theorem does not contradict Proposition 5, since that definability theorem holds for a restricted
class of epistemic plausibility models, whereas this undefinability theorem holds for the entire class of
epistemic plausibility models.



4.1 Adding a new modality

The first approach3 combines language engineering and putting some mild constraints on the
models. These constraints are captured by the following definition:

Definition 10. An epistemic plausibility model M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 is called uni-
form iff the plausibility relations are uniform within epistemic equivalence classes, i.e. iff for any
i ∈ G and w, v ∈W : if w ∼i v then ≤i,w =≤i,v.

This is a natural condition to impose on epistemic plausibility models: it leads to the (intuitively
plausible) epistemic/doxastic introspection principle that agents know their (conditional) beliefs.
Furthermore, uniformity is a dynamically robust notion, in the sense that if an epistemic plausibility
model is uniform, then after it has undergone some dynamics, it is still uniform.

Fact 4. If an epistemic plausibility model M is uniform, then M |= Bαi ϕ→ KiB
α
i ϕ.

Fact 5. If an epistemic plausibility model M is uniform, then so are M!ϕ and M ⇑ ϕ.

Uniform epistemic plausibility models will become very important later on. First, however, we
need to set up some other things. For any agent i ∈ G and state w in a plausibility model, let
us abbreviate <i,w :=≤i,w − ≥i,w and ∼=i,w :=≤i,w ∩ ≥i,w (so x <i,w y iff x ≤i,w y and not
y ≤i,w x; and x ∼=i,w y iff x ≤i,w y and y ≤i,w x). Note that since ≤i,w is a pre-order and thus not
necessarily antisymmetric, it is possible that x ∼=i,w y and yet x 6= y.

We now extend our language with a modality [>i] to talk about this strict version of the
plausibility order. As in Definition 2, the semantics for this modality is relativized to the epistemic
equivalence classes:

Definition 11. Consider an epistemic plausibility model M and state w; then

M, w |= [>i]ϕ iff ∀v ∈ [w]∼i : v <i,w w ⇒M, v |= ϕ

Adding this new modality [>i] as a primitive operator is justified, in the sense that it cannot
be defined in even the richest language of the previous section:

Proposition 3. The modality [>i] cannot be defined in L(K,Bc, B+).

The [>]-modality is actually so expressive that, together with the knowledge operator, it is
able to define the notion of conditional belief — at least, when we restrict ourselves to the uniform
epistemic plausibility models introduced at the beginning of this subsection.

Proposition 4. For all uniform models M, it holds that M |= Bαi ϕ↔ Ki((α ∧ ¬〈>i〉α)→ ϕ).

We now introduce the notion of [>]-bisimilarity, which — as desired — is fully structural:

Definition 12. Given epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ =
〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉 ; a relation Z ⊆W ×W ′ is a [>]-bisimulation iff

– if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p)
– if (w,w′) ∈ Z and w ∼i v and v <i,w w, then there is a v′ ∈ W ′ such that (v, v′) ∈ Z and
w′ ∼′i v′ and v′ <′i,w′ w

′

– if (w,w′) ∈ Z and w′ ∼′i v′ and v′ <′i,w′ w
′, then there is a v ∈ W such that (v, v′) ∈ Z and

w ∼i v and v <i,w w

3 This approach is based on a suggestion by Johan van Benthem and Davide Grossi.



Part 1 of Theorem 6 shows that this is the right notion of bisimulation. Furthermore, we
get combined notions of bisimulation in the obvious way. In particular, {K, [>]}-bisimulations
are combined K- and [>]-bisimulations; since both of the latter notions are purely structural,
also {K, [>]}-bisimulation is structural. Part 2 of Theorem 6 is the analogue of part 1 for this
combined notion. Most importantly, part 3 states that when we restrict ourselves to the class of
uniform models, we can get equivalence for conditional belief4 by means of a structural notion of
bisimulation. Finally, part 4 says that if we restrict to uniform image-finite models, then (struc-
tural) {K, [>]}-bisimilarity implies {K,Bc}-bisimilarity (which involves universal quantification
over formulas).

Theorem 6. Consider two epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and
M′ = 〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉, and a relation Z ⊆W ×W ′.

1. If Z is a [>]-bisimulation, then for all ϕ ∈ L([>]) and for all (w,w′) ∈ Z, it holds that
M, w |= ϕ⇔M′, w′ |= ϕ.

2. If Z is a {K, [>]}-bisimulation, then for all ϕ ∈ L(K, [>]) and for all (w,w′) ∈ Z, it holds
that M, w |= ϕ⇔M′, w′ |= ϕ.

3. If M and M′ are uniform, and Z is a {K, [>]}-bisimulation, then for all ϕ ∈ L(K,Bc) and for
all (w,w′) ∈ Z, it holds that M, w |= ϕ⇔M′, w′ |= ϕ.

4. If M and M′ are uniform and image-finite, then for any states w ∈W and w′ ∈W ′, we have
that if w and w′ are {K, [>]}-bisimilar, then they are {K,Bc}-bisimilar as well.

We finish this subsection by providing an overview of the first strategy to solve the main issue
of Section 3 (viz. finding a structural notion of bisimulation for conditional belief) and evaluating
its advantages and disadvantages.

This strategy has two components. The first component is to impose an extra condition on
epistemic plausibility models, viz. uniformity. We argued that this is relatively harmless, since it
can be given an intuitive motivation in terms of doxastic/epistemic introspection, and because it
is dynamically robust (cf. Facts 4 and 5). The second component involves what van Benthem calls
“redesigning one’s language to fit more standard bisimulations” [5, p. 310]. We introduced a new
modality [>] and showed that together with knowledge, it can define conditional belief (for uniform
models) (cf. Propositions 3 and 4). We then used the structural notion of {K, [>]}-bisimilarity to
establish L(K,Bc)-equivalence and even {K,Bc}-bisimilarity itself (cf. Theorem 6).

The main disadvantage of this approach lies in its second component: the [>]-operator was
introduced for the sole purpose of defining conditional belief (while maintaining a structural notion
of bisimulation). In itself, however, it does not seem to have any intuitive epistemic/doxastic
reading.5 Therefore, this solution ends up looking a bit ad hoc.

4.2 Assuming connectedness

The second approach tries to keep the advantages of the first one, while avoiding its major draw-
back, viz. the ad hoc introduction of new operators. The basic idea is that, with an extra condition
on the epistemic plausibility models, conditional belief can be reduced to knowledge and safe belief.
Hence, the B+-operator plays the role of the [>]-operator in the previous approach, but unlike the
[>]-operator, it does have an intuitive doxastic interpretation. The extra condition on the models
that we need is local connectedness:

Definition 13. An epistemic plausibility model M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 is called locally
connected iff for all agents i ∈ G and states w, v ∈ W it holds that if w ∼i v, then w ≤i,w v or
v ≤i,w w.

4 Actually for L(K, Bc) — but this is no heavy restriction, since it is natural to study both notions
simultaneously anyway.

5 Cf. “The intuitive meaning of these operators [such as [>], LD ] is not very clear, but they can be used
to define other interesting modalities, capturing various ‘doxastic attitudes’.”, [3, p. 32].



Whether this is a natural condition is a bit more doubtful than in the case of uniformity. At
least, local connectedness is dynamically robust:

Fact 7. If an epistemic plausibility model M is locally connected, then so are M!ϕ and M ⇑ ϕ.

When we require the models to be both uniform (cf. the previous subsection) and locally
connected, then conditional belief can be defined in terms of knowledge and safe belief.6

Proposition 5. For all uniform and locally connected models M, it holds that M |= Bαi ϕ ↔(
K̂iα→ K̂i(α ∧B+

i (α→ ϕ))
)
.

Using this definability result, we immediately obtain the analogon of Theorem 6:

Theorem 8. Consider two epistemic plausiblity models M = 〈W, {∼i}i∈G, {≤i,w}w∈Wi∈G , V 〉 and
M′ = 〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉, and a relation Z ⊆W ×W ′.

1. If M and M′ are uniform and locally connected, and Z is a {K,B+}-bisimulation, then for all
ϕ ∈ L(K,B+, Bc) and for all (w,w′) ∈ Z, it holds that M, w |= ϕ⇔M′, w′ |= ϕ.

2. If M and M′ are uniform, locally connected and image-finite, then for any states w ∈ W and
w′ ∈W ′, we have that if w and w′ are {K,B+}-bisimilar, then they are {K,Bc}-bisimilar as
well.

Just as we did in the previous subsection, we now provide an overview of the second strategy to
solve the main issue of Section 3. This approach reduced conditional belief to knowledge and safe
belief, which are both intuitively clear epistemic/doxastic notions. Therefore, the main issue of the
first approach, viz. the ad hoc character of its introduction of the [>]-operator, is avoided. In order
to get the desired results about L(K,Bc)-equivalence and {K,Bc}-bisimilarity (cf. Theorem 8),
we required the epistemic plausibility models to be not only uniform, but also locally connected.
The uniformity constraint inherits of course all of its justifications (intuitive epistemic/doxastic
interpretation and dynamic robustness) from the previous subsection. However, the new constraint,
local connectedness, seems to be less motivated: while it is also dynamically robust (cf. Fact 7), it
might not have as intuitive an interpretation as the uniformity constraint.

5 Dynamics and bisimulation

In this section, we will make some remarks about the interaction between bisimulation and dynamic
model changes. This requires deciding which approach to conditional belief is to be adopted. For
the sake of concreteness, we will henceforth adopt the approach developed in Subsection 4.2.
However, one should keep in mind that this section could easily be rewritten in terms of the
approach developed in Subsection 4.1.

The main use of bisimulations is to prove L-equivalence of two models (for some language
L). Using the well-known reduction axioms for [!ϕ] and [⇑ ϕ], every formula of the dynamic
language L(K,B+, Bc, !,⇑) can be rewritten as an equivalent formula of the original static language
L(K,B+, Bc). Thus, information about what will be the case after some change has taken place
can be pre-encoded in the static language. We will now combine this pre-encoding strategy with
Theorem 8:

Theorem 9. Consider two uniform and locally connected epistemic plausiblity models M = 〈W, {∼i
}i∈G, {≤i,w}w∈Wi∈G , V 〉 and M′ = 〈W ′, {∼′i}i∈G, {≤′i,w′}w

′∈W ′

i∈G , V ′〉, states w ∈W and w′ ∈W ′, and
a {K,B+}-bisimulation Z ⊆ W ×W ′ such that (w,w′) ∈ Z. Furthermore, consider an arbitrary
formula ϕ ∈ L(K,B+, Bc); then:

1. If M, w |= ϕ and M′, w′ |= ϕ, then ∀ψ ∈ L(K,B+, Bc) : M!ϕ,w |= ψ ⇔M′!ϕ,w′ |= ψ.
2. ∀ψ ∈ L(K,B+, Bc) : M ⇑ ϕ,w |= ψ ⇔M′ ⇑ ϕ,w′ |= ψ.
6 A similar definition was already proposed by Boutilier[8, p. 104].



We finish by making a remark about the strength of bisimulation. Theorem 8 tells us that
bisimulation ‘now’ implies modal equivalence ‘now’. Theorem 9, however, tells us that bisimulation
‘now’ implies modal equivalence ‘later ’ (i.e. after the model has undergone some dynamic effects).
Since both uniformity and local connectedness are dynamically robust (cf. Facts 5 and 7), Theorem
9 can be repeated to prove that the same holds for any sequence of epistemic dynamics (e.g. if
M, w and M′, w′ are {K,B+}-bisimilar, then (((M!ϕ1) ⇑ ϕ2) ⇑ ϕ3)!ϕ4, w and (((M′!ϕ1) ⇑ ϕ2) ⇑
ϕ3)!ϕ4, w

′ are L(K,B+, Bc)-equivalent — provided they survive the public announcements, of
course). Hence, if two epistemic plausibility models are bisimilar at one point, then their entire
epistemic-doxastic futures are indistinguishable.

6 Conclusion

The aim of this paper has been to explore the model theory of epistemic plausibility models, which
has been largely ignored in the present literature. We focused on the notion of bisimulation, and
presented several extensions, parametrized by a language L. Using these notions, we proved various
bisimulation-implies-equivalence type theorems, a Hennesy-Milner type theorem, and, perhaps
most importantly, two undefinability results. We also presented and compared two alternative
ways of getting bisimulations for conditional belief. Finally, we established some results about the
interaction between bisimulation and dynamic model changes, and commented on the strength of
bisimulation to establish equivalence ‘now and in the future’.
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