
Language and Coordination Games?

Pei-yu Lo??

The University of Hong Kong

No Institute Given

1 Introduction

Intuitively, if players can communicate, they should be able to reach coordinated
play in a coordination game. However, simply adding a communication stage
before the play of the game does not render coordination as a unique prediction.
This multiplicity of equilibria prevalent in cheap talk games is not alleviated by
re�nements often applied in signaling games because every message is equally
costless.
Farrell [9] and Aumann [1] both propose equilibrium re�nement by assuming

that if the sender�s statement of intention is credible, it should be believed and
thus coordination should be achieved. Farrell [9] argues that the sender�s cheap
talk statement regarding planned behavior is credible if it is self-committing. In
other words, if the sender believes that the statement will be believed, the sender
will have the incentive to follow through. Aumann [1], on the other hand, argues
that, in addition to being self-committing, a credible cheap talk statement must
also be self-signalling ; that is, the sender wants it to be believed only if the
sender indeed plans to carry it out.
Farrell [9] and Aumann [1] both make their cases informally, and although

Baliga and Morris [2] formalize Aumann�s intuition, they do so only by changing
the game into one with incomplete information. On the other hand, we obtain
qualitative results similar to [2] and [1] both formally and without changing the
game.
We observe that a common language is a prerequisite for e¤ective communi-

cation;yet, language itself is absent from cheap talk models. We explicitly model
the existence of a common language in one-sided cheap talk extension of sta-
tic complete information games by restricting beliefs on how messages are used
when information is believed to be transmitted. We show that if the stage game
is both self-committing and the self-signaling, then every iteratively admissible
outcome in the language model constitutes a coordinated play and gives the
Sender her Stackelberg payo¤. We also identify a class of games that violate the
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Receiver�s actions
Go out Stay in

Sender�s actions Go out 1 0

Stay in 0 1
Table 1. 2x2 game

�I will go out��I will not go out�
Constant Out Go out Go out
Constant In Stay in Stay in
Literal Go out Stay in
Perverse Stay in Go out
Table 2. Set of Receiver Strategies in a 2x2 game

self-signaling condition where every iteratively admissible outcome of the stage
game is also an iteratively admissible outcome in the language model.
We do not sharpen the prediction by assuming away any outcome� in that

every equilibrium outcome in the standard cheap talk model remains an equi-
librium outcome in our language model. Thus, our results are driven by the
combination of iterative admissibility and common knowledge of language.
The remainder of this paper is structured as follows. Section 2 models a

common language in 2x2 games and provides intuition on the role of the self-
signaling condition. Section 3 describes the language model in general. Section
4 presents the main results. Section ?? discusses a crude language. Section ??
discusses some related literature, and Section 5 concludes.

2 Motivating Examples

2.1 Modeling Language

Consider a complete information game between a Sender (S, she) and a Receiver
(R, he) as in Table 1 where the numbers represent R�s payo¤s. This setup
represents all 2x2 games where R does not have a dominant action. Call this
the stage game.
In this game, when R acts, R knows only that S�s action belongs to fGo out; Stay ing.

Suppose S has an opportunity to convey information about her action before
they play the stage game by saying either �I will go out" or �I will not go out".
Denote the message set by M . After S speaks, R may either believe (a) that
he learns S�s action, in which case his subjective information system consists of
two information sets, fGo outg and fStay ing, or (b) that he has not learned
anything from S�s statement and, therefore, retains his original information set
fGo out; Stay ing. Using information transmission as the primitives for strate-
gic choice, a pure strategy (behavioral strategy) for R should assign an action
(the probability to play Go out) to every information set in R�s subjective in-
formation system, whereas a pure strategy for S should consist of an action, aS ,
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and the information she delivers. Because S either lets R know her action or
does not, the information she delivers is either her action

�
aS
	
or the trivial

information fGo out; Stay ing. These strategies do not reference messages and
are called information strategies.
The standard model of this cheap-talk extension game uses messages to repre-

sent the strategic aspect of information transmission. In this model, S�s strategy
space isM�AS , and R has four strategies as listed in Table 2. Call these strate-
gies message strategies. This model of communication never reduces the stage
game multiplicity of predictions.1

We argue that this multiplicity arises because language is absent in the stan-
dard model. The two messages �I will go out� and �I will not go out� can be
replaced with anything else (e.g., �drink co¤ee�and �eat cake,�) without chang-
ing the game. In addition, the Literal strategy and the Perverse strategy are
essentially the same in that they both respond to one message by going out and
the other message by staying in, albeit in reversed labeling. A rational Receiver
that believes that the Sender will let him know whether she will go out or stay
in may use either Literal or Perverse depending on his belief of how the Sender
uses messages. A rational Receiver who believes that the Sender will convey the
information as to whether she will go out may still believe that he will not learn
the Sender�s action and use a constant strategy because he is uncertain how the
Sender uses messages to convey the information. In other words, the Receiver�s
belief about what he will learn after the Sender speaks depends not only on his
belief of what information the Sender will convey (information strategy) but also
on his belief of how the Sender uses messages.
Suppose the Sender and the Receiver speak the same native tongue and come

from the same cultural background. There should be no uncertainty about how
messages are used; the only question is what information will be transmitted.
After all, a common language provides a focal way to use messages to transmit
information. Using the framework with information strategies, a common lan-
guage implies that R believes he will learn whether S will go out if R believes
that S will deliver such information. Condition 2.1 expresses this idea using
message strategies.
If R believes that S will let him know whether she will go out or not, then R

believes that S uses �I will go out" to mean that she will go out and �I will not
go out" to mean she will stay in.
This condition renders the two messages asymmetric when information is

expected to be transmitted. On the other hand, when R believes that S will
not convey any information, language plays no role and the two messages are
symmetric and give the Receiver the same information, namely, no information.
Because they belong to the same information set, they should be assigned the

1 Every stage game equilibrium outcome is the outcome of a babbling equilibrium
in this cheap-talk extension game. In a babbling equilibrium,the Receiver uses a
constant strategy, and thus the Sender is indi¤erent between messages and might as
well randomize and reveal no information.



IV

�I will go out��I will not go out�
Constant Out Go out Go out
Constant In Stay in Stay in
Literal Go out Stay in

Table 3. Set of Receiver strategies in a 2x2 game with language

same action. This point is clear in the information framework. Condition 2.1
expresses this symmetry using message strategies.

If R believes that S will not let him know whether she will go out or not,
then R uses constant strategies.2

With these two conditions, each information strategy is represented by one
message strategy. For example, for R who believes he will learn whether S goes
out, R�s information strategy that matches S�s action is described by the message
strategy Literal; for R who believes he will not learn S�s action, R�s information
strategy that chooses Go out at his sole information set is described by the mes-
sage strategy Constant Out. S�s information strategy that uses action Stay In
and conveys trivial information fOut; Ing is described by choosing Stay In and
saying �I will go out"; S�s information strategy that uses action Stay in and
conveys the information fIng is described by choosing Stay in and saying �I
will not go out". Note that when S uses the latter strategy, R will receive the
information fIng only if R believes that S can convey such information and
interprets the message �I will not go out" as such. If R believes that S will
not convey such information, R will interpret the message as conveying only the
trivial information.

In a world with common language where R is rational, the support of R�s
strategy must belong to Table 3. Modeling language as a direct restriction
on the Receiver�s pure strategy set can be viewed as a short cut to modeling
communication with a common language and common knowledge of rationality.
We take this short cut to incorporate language because an epistemic analysis is
not the focus of this paper.

2 Condition 2 is an implication of rationality unless R believes that S does not con-
vey information and R holds a non-generic belief about S�s actions such that R is
indi¤erent between actions. When R holds such a belief, all mappings from M to
AR (including constant mappings) are R�s best responses and the two messages are
completely symmetric. If S believes that R holds such a belief, then there is no rea-
son why one message is better than the other. Condition 2 uses constant strategies
to represent this symmetry. If we take the super�cial di¤erences between messages
seriously, then Condition 2 does restrict the strategy space of the Receiver who holds
such a belief. This is not a real restriction because restating both conditions as "if
S believes R believes..., then S believes R..." does not change the conclusions. This
restatement implies that the R�s pure (behavioral) strategy space is all mappings
from M to AR (�AR) . We do not choose this de�nition because it makes the
description more cumbersome without achieving more.
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Receiver�s actions
Opera Club

Sender�s actions Opera 2,1 0,0
Club 0,0 1,2

Table 4. Battle of Sex Game

�opera��club�
Constant Opera Opera Opera
Constant Club Club Club
Literal Opera Club

Table 5. Receiver�s Strategies in Battle-of-the-Sex Game with Language

2.2 A Self-signaling Coordination Game

In the battle-of-the-sexes game in Table 4, there are two pure strategy Nash
equilibria: both go to the Opera and both go to the Club. The Sender prefers
the �rst equilibrium and the Receiver prefers the second. A Pareto ine¢ cient
mixed strategy equilibrium also exists. The promise �I will go to the opera�is
self-committing because if the Sender thinks that the Receiver will believe this
statement and play his best response, Opera, the Sender would prefer to go to
the Opera and carry out her promise. The promise is also self-signaling because,
had the Sender not intended to go to the Opera (i.e. she intended to go to the
Club), she would prefer the Receiver to go to the Club instead of the Opera
and, hence, would not want the Receiver to believe the promise �I will go to the
opera.�
Following the previous discussion of the cheap-talk extension game with a

common language, the support of a rational Receiver�s strategy belongs to table
5. If the Sender believes that the Receiver is rational, then sending the message
�opera�and going to the Club is weakly dominated for the Sender by sending
the message \club" and going to the Club. This is because if the Sender is going
to the Club, she prefers the Receiver to go to the Club. If what the Sender
says a¤ect what the Receiver does, she gets her preferred action only if she
says \club:" Likewise, the strategy (\Club"; Opera) is weakly dominated for the
Sender by the strategy (\Opera"; Opera).
Given this, both constant strategies for the Receiver are weakly dominated

by the strategy Literal. Thus coordinated play is always achieved by sending
the right message. Because the Sender prefers (Opera;Opera) to (Club; Club),
the optimal strategy for her is to say �opera�and go the the Opera. Thus, we
obtain the unique outcome that the Sender and the Receiver coordinate on the
Sender�s preferred equilibrium.3

3 The same argument goes for symmetric coordination games. The point here is to
illustrate speaker advantage.
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Receiver
Invest NotInvest

Sender�s actions Invest 2; 2 �1; 1
NotInvest 1;�1 0; 0

Table 6. Investment Game

\invest" \not"

Constant Invest Invest Invest
Constant Not Not Not
Literal Invest Not

Table 7. Receiver�s Strategies in Investment Game with Language

2.3 A Coordination Game Violating Self-signaling Condition

The investment game in Table 6 illustrates the role of the self-signalling crite-
rion. This game contains three equilibria. (Invest; Invest) is the unique Pareto
e¢ cient equilibrium. The promise �I�m going to invest�is self-committing but
not self-signaling because if the Sender intends to choose Not, possibly due to
lack of con�dence that the Receiver is really going to Invest, she still prefers
the Receiver to use the strategy Invest, and thus, as Aumann argues [1], this
promise is not credible because the Sender would like the Receiver to believe her
promise regardless of her intended action.
In the game with a common language, rationality implies that the support of

the Receiver�s strategy belongs to Table 7. Given this, sending message \not"
and choosing Invest is weakly dominated by sending the message �invest�and
choosing Invest, because when the Sender invests, she prefers that the Receiver
invest, and whenever talking a¤ects the outcome, she gets her preferred action
only by saying �invest.� Because the Sender has the same preference regard-
ing the Receiver�s actions no matter which action she takes, the same argument
shows that (\not"; Not) is weakly dominated by (\invest"; Not). Thus, only the
message �invest�survives. The Sender may choose Invest and deliver this infor-
mation, but the Sender may choose Not Invest and deliver trivial information.
Therefore, if the Receiver believes that the Sender delivers trivial information
and chooses Not Invest, he will use Constant Not. Because Constant Not can-
not be ruled out by this reasoning, we cannot rule out the Sender strategy by
which the Sender delivers no information and chooses Not Invest. The iterative
process stops here.

2.4 Matching-Pennies Game

Consider the matching-pennies game in Table 8. If R is rational, then R�s strate-
gies in a world with common language can be represented in Table 9. Given
this, both (�Heads",Heads) and (�Tails",Tails) are weakly dominated. Note
that (�Heads",Tails) represent S�s strategy to convey the trivial information
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Receiver
Heads Tails

Sender�s actions Heads �1; 1 1;�1
Tails 1;�1 �1; 1

Table 8. Matching-Pennies Game

\Heads" \Tails"

Constant Heads Heads Heads

Constant Tails Tails Tails

Literal Heads Tails
Table 9. Receiver�s Strategies in Matching-Pennies Game with Language

fHeads; Tailsg and then to choose Tails. If R reasons that S does not use
weakly dominated strategies, then he also reasons that S will not convey any
information and thus will use constant strategies because both messages give
the same trivial information.4 The language model provides a unique prediction
in which no information is transmitted.

3 The Model

Let g denote a �nite complete information game between the Sender (S, she) and
the Receiver (R, he). Each player i chooses simultaneously an action ai 2 Ai
and obtains a payo¤ gi

�
aS ; aR

�
. We study the cheap talk extension game where

S sends a costless message before S and R play the stage game g.
We denote the best response correspondences in g by bi : Aj ! Ai where

i; j 2 fS;Rg and i 6= j. (In following discussions, �best response� refers to the
best response in the cheap talk extension game.) For simplicity, we assume that
bi is a function for i = S;R, and no action in g is weakly dominated.5 Extend
the de�nition to 2A

j

by de�ning bi (A) to be the set of best responses to all
conjectures concentrating on A � Aj .
In the standard model G of this cheap talk extension game, a pure Sender

strategy, denoted by sS , belongs to M � AS := SS , whereas a pure Receiver
strategy, denoted by sR 2 SR, is a function from M to AR. As we argue in the
previous discussion of modeling language, this setup is a model of communication
without a common language. We now describe how the standard model G can
be transformed into the language model GL by adding restrictions on beliefs to

4 This is by way of Condition 2.1. If we restate the conditions according to Footnote
2.1, all mappings from M to AR are iteratively admissible in the language model.
However, the conclusion remains that S does not convey any information and that
R believes so.

5 The conclusions in this paper go through without these assumptions. The assump-
tions make the proof easier to read.
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incorporate the existence of a common language. We use iterative admissibility
as the solution concept for GL.6

3.1 Incorporating Language

We assume a large message set M that can express every decreasing sequence of
subsets of Sender actions A1A2:::An, denoted by �A1A2:::An" and referred to as
hierarchical claims. This can be achieved if M contains an expression for every
A1 � AS and an expression for concatenation such as �in particular�. These
expressions abound in any natural language just as sentences can be conjoined
to form a paragraph of speech.
All hierarchical claims that share a beginning sequence A1:::Aj are called a

message branch, denoted byM (A1:::Aj). They all express the same idea A1...Aj ,
though di¤ering in further details within Aj . Among M (A1:::Aj), messages
starting with A1:::Aj (AjnAj+1) express the further idea AjnAj+1. They are
thus related to messages starting with A1:::AjAj+1 via negation. Two message
branches related by negation, eg. M (A1:::AjAj+1) and M (A1:::Aj (AjnAj+1)),
are called a message bundle.
In the language model, a pure Sender strategy consists of an action and the

information she delivers, whereas a pure (behavioral) strategy of R assigns an
action (a probability distribution over AR) to every information set R believes
he may obtain, where the system of information sets R believes he may obtain
is determined by what information R believes S will convey.7 This model can
be represented by the standard model G restricted to condition 3.1.8

If R believes that S will convey information as to whether she takes an action
in A1 or not, and if in A1, in A2 � A1 or not, ...., and if in Aj�1, in Aj � Aj�1
or not, but not whether aS is in Aj+1 � Aj or AjnAj+1, then R believes that
messages in M (A1:::Aj) are used to convey the information that aS is in A1, in
A2, ... and in particular in Aj and that messages in M (A1:::Aj�1 (Aj�1nAj))
are used to convey the information that aS is in A1, in A2,... and, in particular,
in Aj�1nAj , but all messages in M (A1:::AjAj+1) and M (A1:::Aj (AjnAj+1))
belong to the same information set and are responded to with the same action.
Let �A1:::An" be a hierarchical claim and aS 2 AjnAj+1 where j � n.9

Then
�
�A1:::An"; aS

�
represents S�s strategy that takes action aS and conveys

6 The role weak dominance plays is to capture the idea that the Sender does not
completely rule out the possibility that the Receiver is responsive to messages. If the
stage game is such that order does not matter in applying iterative weak dominance,
then order does not matter in the language model. This is because messages are
costless for both the Sender and the Receiver, thus satisfying the necessary condition
in [10] for iterative weak dominance to be order-independent.

7 This is the framework with information strategies described in Section 2.1
8 Rigourously speaking, the model should include belief hieararchies. We take this
short cut because we only need the belief hierarchy to de�ne rationality and a full-
blown epistemic analysis is not the focus of this paper.
The discussion in footnote 2.1 applies as well.

9 Let A0 = AS and An+1 = ;.
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information that her action belongs to A1, A2, ...and in particular Aj , but doesn�t
convey the information whether her action is in Aj+1 or not. If R believes that S
uses

�
�A1:::An"; aS

�
, then R will respond to all messages in M (A1:::AjAj+1) [

M (A1:::Aj (AjnAj+1)) with the same action, which belongs to bR (Aj) if R is
rational.
In the language model GL, rationality implies that any pure strategy R uses

is a language-based response.

De�nition 1. sR is a language-based response if for all decreasing sequence
A1:::AjAj+1 in AS, either sR is constant on

M (A1:::AjAj+1) [M (A1; :::; Aj (AjnAj+1)) ,

or sR (m) 2 bR (Aj+1) for all m 2M (A1:::AjAj+1) and sR (m) 2 bR (AjnAj+1)
for all m 2M (A1; :::; Aj (AjnAj+1)).

Consider again AS = fa; b; c; dg. Denote by the capital letter of the Sender�s
action the Receiver�s stage-game best response. In Figure ??, the function illegal
is not a language-based response because it responds to message �fa; b; cg fbg "
with action C =2 fBg = bR (fbg) but is not constant on M (�fa; b; cg fbg ") [
M (�fa; b; cg fa; cg ").
Condition 3.1 captures a common language without ruling out any outcome.

In the language model, if the Sender knows that the Receiver is rational, the
Sender knows that his strategy is represented by a language-based response.
Knowledge of rationality alone, however, does not imply that S knows R�s re-
sponse to a particular message m. Note that every constant function from M
to bR

�
AS
�
is a language-based response. In addition, every equilibrium out-

come in the standard model G is still an equilibrium outcome in the language
model. It su¢ ces to observe that, for any subset of undominated actions in AR,
a language-based response exists whose range is equal to that subset.

3.2 Solution Concept

Let
�
I;
�
Sj
�
j2I ;

�
U j
�
j2I

�
be a normal form game. Denote by �X the set of

probability distributions on X, and by �+X the set of probability distributions
which put a positive weight on every element of X. We rewrite the de�nition of
iterative admissibility taken from Brandenburger et al. [3].

De�nition 2. Fix
�
Xj
�
j2I �

�
Sj
�
j2I . A strategy s

i is weakly dominated with

respect to X�i if there exists �̂i 2 �Xi such that U i
�
�̂i; s�i

�
� U i

�
si; s�i

�
for every s�i 2 X�i and that U i

�
�̂i; ŝ�i

�
> U i

�
si; ŝ�i

�
for some ŝ�i 2 X�i.

Otherwise, say that si is admissible with respect to
�
Xj
�
j2I . If s

i is admissible

w.r.t.
�
Sj
�
j2I , simply say that s

i is admissible.
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De�nition 3. Set Si (0) = Si for i 2 I and iteratively de�ne

Si (k + 1) =

�
si 2 Si (k) :

si is not weakly dominated with respect to
�
Si (k)

�
i2I

�
.

Write \1k=0Si (k) = Si (1) and \1k=0S (k) = S (1). A strategy si 2 Si (1) is
called iteratively admissible.

Prior studies have shown that when there are only two players, a strategy is
weakly dominated if and only if it is never a best response to a totally mixed
strategy.

Lemma 1. A strategy ŝi 2 XR where i 2 fS;Rg is admissible with respect
to XS � XR if and only if there exists �̂j 2 �+Sj where j 6= i such that

UR
�
�̂S ; ŝR

�
� UR

�
�̂S ; sR

�
for every sR 2 XR.

Because we assume that no action in g is weakly dominated, in the lan-
guage model, the set of admissible pure Receiver strategies is exactly the set
of language-based Receiver strategies and all Sender strategies are admissible.
Therefore, the analysis in Section 4 and ?? will start from the second iteration.

4 Results

In this section we generalize the intuition gained from the contrast between the
battle-of-the-sexes game and the investment game.
Because the action set is �nite, let

AS = f1; 2; :::; Ng .

Let � denote a permutation of f1; 2; :::; Ng. De�ne

m�;N�k := A1:::AN�k�1 f� (N � k)g ,

and M (�;N � k + 1) := M (A1:::AN�k), where Aj = Aj�1n f� (j)g for j � 1
and A0 = AS . Messages inM (�;N � k + 1) claim literally that the action taken
is not � (1), not � (2),...,and not � (N � k). Messagem�;N�k claims literally that
the action taken is not � (1),...,not � (N � k � 1), and in particular is � (N � k).

4.1 A Su¢ cient Condition to Guarantee Stackelberg Payo¤ for the
Sender

The formal de�nition of the self-committing condition is proposed by Baliga and
Morris (2002).

De�nition 4 (Baliga and Morris [2]). The stage game g is self committing
if bS

�
bR
�
aS
��
= aS for all aS 2 AS.
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According to Aumann [1], a statement is self-signaling if the speaker would
want it to be believed only if it is true. Baliga and Morris [2] formalize the
de�nition as follows.

De�nition 5 (Baliga and Morris [2]). The stage game g is self-signalling (for
the Sender) if gS

�
aS ; bR

�
aS
��
> gS

�
aS ; aR

�
for every aS 2 AS, and aR 2 AR.

De�ne the Sender�s Stackelberg payo¤ to be

max
~aS

gS
�
~aS ; bR

�
~aS
��
,

that is, her highest payo¤ in g if she were able to choose her action before the
Receiver does. An action is the Sender�s Stackelberg action if it achieves her
Stackelberg payo¤ were she able to commit.
Proposition 1 gives a su¢ cient condition for the Sender to be guaranteed her

Stackelberg payo¤.

Proposition 1. If the stage game g is self-signalling and self-committing, then
every iteratively admissible strategy pro�le

��
m;aS

�
; sR

�
in the language model

gives the Sender her Stackelberg payo¤.

4.2 Games Violating Self-signaling Condition

Common language and weak dominance reasoning allows the Sender to convey
information about her preference over AR, which indirectly enables the Sender
to convey information about her intention when g is self-signaling and self-
committing. Therefore, if the Sender�s preference over the Receiver�s actions is
invariant with her own intention, communication is not necessarily e¤ective.

Proposition 2. If g is self-committing and the Sender�s preference over the
Receiver�s actions is independent of her own action, then for every

�
aS ; aR

�
,

there exists an iteratively admissible strategy pro�le
��
m;aS

�
; sR

�
in the lan-

guage model such that sR (m) = aR.

5 Conclusion

We model a common language by adding restrictions on beliefs of how messages
are used when information is expected to be conveyed. The language model
does not rule out any outcome at hand. We show that, if the stage game is self-
committing and self-signaling, then every iterative admissible outcome in the
language model gives the Sender her Stackelberg payo¤. On the other hand, if
the stage game is self-committing but the Sender�s preference for the Receiver�s
actions does not depend on her intended action, every iteratively admissible
stage game outcome is also an iteratively admissible outcome in the language
model.
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