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Abstract. The first problem of this paper is as follows: what kind of
preference logic can formalise inferences in which indifference is not tran-
sitive? (Intransitivity Problem) The aim of this paper is to propose a new
version of complete and decidable extrinsic preference logic–threshold
utility maximiser’s preference logic (TUMPL) that can solve the Intran-
sitivity Problem. Generally, preference logics are in danger of inviting
the following problem: almost every principle which has been proposed
as fundamental to one preference logic has been rejected by another one.
(Fundamental Problem of Intrinsic Preference) A corollary of the Scott-
Suppes theorem in measurement theory enables TUMPL to avoid the
Fundamental Problem of Intrinsic Preference.
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1 Introduction

The economist Armstrong ([1]) was one of the first to argue that indifference is
not always transitive. Luce ([[8]: 179]) gave the following counterexample to the
transitivity of indifference:

Example 1 (Intransitivity of Indifference). Find a subject who prefers a cup of
coffee with one cube of sugar to one with five cubes. . . . Now prepare 401 cups of
coffee with (1 + i

100 )x grams of sugar, i = 0, 1, . . . , 400, where x is the weight of
one cube of sugar. It is evident that he will be indifferent between cup i and cup
i + 1, for any i, but by choice he is not indifferent between i = 0 and i = 400. ¥
This example shows a situation where we would face the Sorites Paradox 1 in
preference if indifference were transitive. The first problem now arises:

Problem 1 (Intransitivity Problem). What kind of preference logic can formalise
inferences in which indifference is not transitive? ¥
1 [7] gives a comprehensive survey of topics of vagueness.



We call it the Intransitivity Problem. A considerable number of studies have been
made on preference logic. In recent years, van Benthem and Liu ([19]) provided
a logic of preference change, and van Benthem et al. ([20]) proposed a logic for
ceteris paribus preferences.2 But little attention has been given to preference
logic for intransitive indifference, though numerous attempts have been made on
the study of intransitive indifference itself.3 The aim of this paper is to propose a
new version of complete and decidable extrinsic preference logic–threshold utility
maximiser’s preference logic (TUMPL) that can solve the Intransitivity Problem.

Generally, preference-based logics are in danger of inviting the following prob-
lem. Von Wright ([22]) divided preferences into two categories: extrinsic and
intrinsic preference. An agent is said to prefer ϕ1 extrinsically to ϕ2 if ϕ1 is
better than ϕ2 in some explicit respect. So we can explain extrinsic preference
from some explicit point of view. If we cannot explain preference from any ex-
plicit point of view, we call it intrinsic. Most preference logics that have been
proposed are intrinsic but little attention has been paid to extrinsic preference.
Von Wright ([23]) posed the following fundamental problem intrinsic preference
logics faced.

Problem 2 (Fundamental Problem of Intrinsic Preference). The development of
a satisfactory logic of preference has turned out to be unexpectedly problematic.
The evidence for this lies in the fact that almost every principle which has been
proposed as fundamental to one preference logic has been rejected by another
one. ¥
We call it the Fundamental Problem of Intrinsic Preference. For example, the
status of such logical properties as Transitivity, Contraposition, Conjunctive
expansion, Disjunctive Distribution and Conjunctive Distribution is as follows:

Example 2 (Variety of Preferences).
von Wright ([22]) Martin ([9]) Chisholm and Sosa ([3])

Transitivity + + +
Contraposition − + −
Conjunctive Expansion + − −
Disjunctive Distribution − − −
Conjunctive Distribution + − −

‘+’ denotes the property in question being provable in the logic in question. ‘−’
denotes the property in question not being provable in the logic in question.
Conjunctive Expansion says that an agent does not prefer ϕ1 to ϕ2 iff he does
not prefer ϕ1&¬ϕ2 to ϕ2&¬ϕ1. Disjunctive Distribution says that if he does
not prefer ϕ1 ∨ ϕ2 to ϕ3, then he does not prefer ϕ1 to ϕ3 or does not prefer
ϕ2 to ϕ3. Conjunctive Distribution says that if he does not prefer ϕ1 to ϕ2 and
does not prefer ϕ3 to ϕ2, then he does not prefer ϕ1 ∨ ϕ3 to ϕ2. ¥

According to Mullen ([10]), we can analyse its cause as follows. The adequacy
criteria for intrinsic preference principles considered by preference logicians have
2 In [16] we proposed a new version of sound and complete dynamic epistemic prefer-

ence logic DEPL.
3 For further details of intransitive indifference, see, for example, [5].
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been whether the principles are consistent with our intuitions of reasonableness.
But each intuition often disagrees even on the fundamental properties. Differ-
ent theories, such as ethics, welfare economics, consumer demand theory, game
theory and decision theory make different demands upon the fundamental prop-
erties of preference. So if we would like to propose preference logic that can avoid
the Fundamental Problem of Intrinsic Preference, it should be constructed not
from intuition but from a theory or a rule in a theory, that is, it should be ex-
trinsic.4 In order to avoid the Fundamental Problem of Intrinsic Preference, we
resort to measurement theory.5 There are two main problems with measurement
theory:

1. the representation problem–justifying the assignment of numbers to objects
or propositions,

2. the uniqueness problem–specifying the transformation up to which this as-
signment is unique.

A solution to the former can be furnished by a representation theorem, which
establishes that the chosen numerical system preserves the relations of the re-
lational system. When we provide TUMPL with a model based on semiorders,
by virtue of a corollary of the Scott-Suppes representation theorem, we adopt
threshold utility maximisation as a rule in decision theory that makes demands
upon the fundamental properties of preference, which enables TUMPL to avoid
the Fundamental Problem of Intrinsic Preference.

The structure of this paper is as follows. In Section 2, we state weak orders as
global rationality and semiorders as bounded rationality. In Section 3, we define
the language LTUMPL of TUMPL, and define a structured Kripke model M for
preference, and provide TUMPL with a truth definition, and provide TUMPL
with a proof system, and sketch the proof of the soundness, completeness and
decidability of TUMPL.

4 We are indebted to Fenrong Liu for the following comment. Hansson shares his view
with Mullen when he says:

The basic theory of preference relations contains a trivial part reflected by
axioms A1 [transitivity] and A2 [connectedness], which say that preference
relations are [total] preorders. The next step is to find other axioms which
carry the theory beyond the level of the trivial. This paper is to a great part a
critical survey of such suggested axioms. The results are much in the negative–
many proposed axioms imply too strange theorems to be acceptable as axioms
in a general theory of preference. This does not exclude, of course, that they
may well be reasonable axioms for special calculi of preference [italics are
added].([[6]: 441])

5 [11] gives a comprehensive survey of measurement theory.
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2 Weak Orders as Global Rationality and Semiorders as
Bounded Rationality

The standard model of economics is based on global rationality that requires an
optimising behavior. Utility maximisation is a typical example of an optimising
behavior. Cantor ([2]) proved the representation theorem for utility maximisa-
tion.

Theorem 1 (Representation for Utility Maximisation, Cantor ([2])).
Suppose A is a countable set and º is a binary relation on A. Then º is a weak
order (transitive and connected) iff there is a function u : A → R such that for
any x, y ∈ A,

x º y iff u(x) ≥ u(y).

¥

But according to Simon ([15]), cognitive and information-processing constrains
on the capabilities of agents, together with the complexity of their environment,
render an optimising behavior an unattainable ideal. He dismissed the idea that
agents should exhibit global rationality and suggested that they in fact exhibit
bounded rationality that allows a satisficing behavior.6 One explanation for Ex-
ample 1 is that the intransitivity of indifference results from the fact that we
cannot generally discriminate very close quantities. The psychophysicist Fechner
([4]) explained this inability by the concept of a threshold of discrimination, that
is, just noticeable difference (JND). Given a stimulus intensity i, its JND δ(i)
is the lowest intensity increment such that i + δ(i) is recognised to be higher
than i by a subject. This psychophysical approach is statistical. Luce introduced
the concept of a semiorder that can provide ‘a non-statistical [italics are added]
analogue of the “just noticeable difference” concept of psychophysics’ ([[8]: 180]).
Scott and Suppes ([[12]: 117]) defined a semiorder as follows:

Definition 1 (Semiorder). Â on A is called a semiorder if, for any w, x, y, z ∈
A, the following conditions are satisfied:

1. x 6Â x. (Irreflexivity),
2. If w Â x and y Â z, then w Â z or y Â x. (Intervality),
3. If w Â x and x Â y, then w Â z or z Â y. (Semitransitivity).

¥

Threshold utility maximisation is a typical example of a satisficing behavior.
Scott and Suppes ([12]) proved a representation theorem for threshold utility
maximisation when A is finite.

6 We learned from van Rooij ([21]) the relation between the Sorites Paradox and
bounded rationality.

4



Theorem 2 (Representation for Threshold Utility Maximisation,
Scott and Suppes ([12])). Suppose that Â is a binary relation on a finite
set A and δ is a positive number. Then Â is a semiorder iff there is a function
u : A → R such that for any x, y ∈ A,

x Â y iff u(x) > u(y) + δ.

¥

Remark 1. Scott ([13]) simplified the Scott-Suppes theorem in terms of the solv-
ability of finite system of linear inequalities. ¥

3 Threshold Utility Maximiser’s Preference Logic
TUMPL

3.1 Language

We define the language LTUMPL of TUMPL.

Definition 2 (Language). Let S denote a set of sentential variables, K a
knowledge operator, SPR a strict preference relation symbol. The language
LTUMPL of TUMPL is given by the following rule:

ϕ ::= s | > | ¬ϕ | ϕ1&ϕ2 | Kϕ | SPR(ϕ1, ϕ2),

where s ∈ S, and nestings of SPR do not occur. ⊥,∨,→ and ↔ are introduced
by the standard definitions. We define an indifference relation symbol IND and
a weak preference relation symbol WPR as follows:

IND(ϕ1, ϕ2) := ¬SPR(ϕ1, ϕ2)&¬SPR(ϕ2, ϕ1),
WPR(ϕ1, ϕ2) := SPR(ϕ1, ϕ2) ∨ IND(ϕ1, ϕ2).

The set of all well-formed formulae of LTUMPL will be denoted by ΦLTUMPL
. ¥

Remark 2. We introduce K that has a knowledge accessibility relation R in order
to construct a set Ww of all possible worlds that are accessible from w ∈ W by
means of R. Ww is the first component of a preference space (Ww,Fw,Âw). ¥

3.2 Semantics

We define a structured Kripke model M for TUMPL.

Definition 3 (Model). M is a quadruple (W, R, V, ρ), where:

– W is a nonempty set of possible worlds,
– R ⊆ W × W is a knowledge accessibility relation,
– V is a truth assignment to each s ∈ S for each w ∈ W,
– ρ is a preference space assignment that assigns to each w ∈ W a preference

space (Ww,Fw,Âw), where:
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• Ww := {w′ ∈ W : R(w,w′)},
• Fw is a Boolean algebra of subsets of Ww,
• Âw on Fw is a semiorder.

¥

Since A is an arbitrary finite set, the next corollary follows directly from
Theorem 2.

Corollary 1 (Representation on Finite Boolean Algebra). Suppose that
W is a finite set of possible worlds and F is a finite Boolean algebra of subsets
of W and Â is a binary relation on F , and δ is a positive number. Then Â is a
semiorder iff there is a function u : F → R such that for any α, β ∈ F ,

α Â β iff u(α) > u(β) + δ.

¥

Remark 3. Corollary 1, together with Corollary 2 described later, can guarantee
that Âξ in a preference space of a canonical model for TUMPL is a threshold
utility maximiser’s preference relation. ¥

We provide TUMPL with the following truth definition relative to M:

Definition 4 (Truth). The notion of ϕ ∈ ΦLTUMPL
being true at w ∈ W in M,

in symbols (M, w) |=TUMPL ϕ is inductively defined as follows:

• (M, w) |=TUMPL s iff V (w)(s) = true,
• (M, w) |=TUMPL >,
• (M, w) |=TUMPL ϕ1&ϕ2 iff (M, w) |=TUMPL ϕ1 and (M, w) |=TUMPL ϕ2,
• (M, w) |=TUMPL ¬ϕ iff (M, w) 6|=TUMPL ϕ,
• (M, w) |=TUMPL Kϕ iff, for any w′ such that R(w,w′), (M, w′) |=TUMPL ϕ,
• (M, w) |=TUMPL SPR(ϕ1, ϕ2) iff [[ϕ1]]Mw Âw [[ϕ2]]Mw ,

where [[ϕ]]Mw := {w′ ∈ W : R(w,w′) and (M, w′) |=TUMPL ϕ}. If (M, w) |=TUMPL

ϕ for all w ∈ W, we write M |=TUMPL ϕ and say that ϕ is valid in M. If ϕ is
valid in all structured Kripke models for TUMPL, we write |=TUMPL ϕ and say
that ϕ is valid. ¥

We would like to provide a counter-model of the transitivity of indifference.
We now return to Example 1. Assume that U := (W, R, V, ρ) is given, where:

– W := {w0, . . . , w400}, where wi is a possible world in which you try a cup
of coffee with (1 + i

100 )x grams of sugar, for any i (0 ≤ i ≤ 400),
– R ⊆ W × W is a knowledge accessibility relation,
– V is a truth assignment to each s ∈ S for each wi ∈ W,
– ρ is a preference space assignment that assigns to each wi ∈ W a preference

space (Wwi ,Fwi ,Âwi), where:
• Wwi := {w′

i ∈ W : R(wi, w
′
i)},

• Fwi is a Boolean algebra of subsets of Wwi ,
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• Âwi on Fwi is a semiorder,
• {wj} ∼wi {wj+1}, for any j (0 ≤ j ≤ 400),
• {w0} �wi

{w400}.

Let ϕi denote the sentence “You try a cup of coffee with (1 + i
100 )x grams of

sugar”, for any i (0 ≤ i ≤ 400). Then we have, for any i (0 ≤ i ≤ 400),

[[ϕj ]]Uwi
∼wi [[ϕj+1]]Uwi

, for any j (0 ≤ j ≤ 400),
[[ϕ0]]Uwi

�wi [[ϕ400]]Uwi
,

for [[ϕj ]]Uwi
= {wj} holds for any j (0 ≤ j ≤ 400). It must be noted that,

for any i (0 ≤ i ≤ 400), because Âwi on Fwi is a semiorder, [[ϕj ]]Uwi
∼wi

[[ϕj+1]]Uwi
for any j (0 ≤ j ≤ 400) does not imply [[ϕ0]]Uwi

∼wi [[ϕ400]]Uwi
. So we

have, for any i (0 ≤ i ≤ 400),

(U , wi) 6|=TUMPL (IND(ϕ0, ϕ1)& · · ·&IND(ϕ399, ϕ400)) → IND(ϕ0, ϕ400).

Therefore we obtain the following proposition.

Proposition 1 (Intransitivity of Indifference).

6|=TUMPL (IND(ϕ0, ϕ1)& · · ·&IND(ϕ399, ϕ400)) → IND(ϕ0, ϕ400).

¥

3.3 Syntax

We provide TUMPL with a proof system.

Definition 5 (Proof System). The proof system of TUMPL consists of the
following:

1. all tautologies of classical sentential logic,
2. K(ϕ1 → ϕ2) → (Kϕ1 → Kϕ2) (K),
3. K(ϕ1 ↔ ϕ2)&K(ψ1 ↔ ψ2) → (SPR(ϕ1, ψ1) ↔ SPR(ϕ2, ψ2))

(Replacement of Known Equivalents),
4. ¬SPR(ϕ,ϕ)

(Syntactic Counterpart of Irreflexivity),
5. (SPR(ϕ1, ϕ2) ∧ SPR(ϕ3, ϕ4)) → (SPR(ϕ1, ϕ4) ∨ SPR(ϕ3, ϕ2))

(Syntactic Counterpart of Intervality),
6. (SPR(ϕ1, ϕ2) ∧ SPR(ϕ2, ϕ3)) → (SPR(ϕ1, ϕ4) ∨ SPR(ϕ4, ϕ3))

(Syntactic Counterpart of Semitransitivity),
7. Modus Ponens,
8. Necessitation.

A proof of ϕ ∈ ΦTUMPL is a finite sequence of LTUMPL-formulae having ϕ as the
last formula such that either each formula is an instance of an axiom, or it can
be obtained from formulae that appear earlier in the sequence by applying an
inference rule. If there is a proof of ϕ, we write `TUMPL ϕ. ¥
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3.4 Metalogic

We prove the metatheorems of TUMPL. It is easy to prove the soundness of
TUMPL.

Theorem 3 (Soundness). For any ϕ ∈ ΦLTUMPL
, if `TUMPL ϕ, then |=TUMPL ϕ.

¥

We now turn to the task of proving the completeness of TUMPL. We prove
it by developing the idea of Segerberg ([14]) that we modify filtration theory in
such a way that completeness can be established by Corollary 1 (Representation
on Finite Boolean Algebra). We cannot go into details because of limited space.
The outline of the proof is as follows. We begin by defining some new concepts.

Definition 6 (Stuffedness). Suppose that Θ is a set of formulae such that Θ
is closed under subformulae and ⊥ ∈ Θ. Let

∆ := {ϕ : for some ψ, SPR(ϕ,ψ) or SPR(ψ,ϕ)},

and let ∆′ be the closure of ∆ under Boolean compounds. If Θ satisfies also the
condition that SPR(ϕ,ψ) ∈ Θ, for any ϕ,ψ ∈ ∆′, we say that Θ is stuffed. ¥

Definition 7 (Value Formula). The formulae in ∆′ are called the value for-
mulae of Θ. ¥

Remark 4. There is no occurrence of SPR in value formulae. ¥

Definition 8 (Base). We say that Ψ0 ⊆ ΦLTUMPL
is a base (with respect to

TUMPL) for Ψ ⊆ ΦLTUMPL
if for any ϕ ∈ Ψ there is some ϕ0 ∈ Ψ0 such that

`TUMPL ϕ ↔ ϕ0. ¥

Definition 9 (Logical Finiteness). We say that Ψ is logically finite (with
respect to TUMPL) if there is a finite base for Ψ . ¥

Remark 5. A set has finite base if it has a logically finite one. ¥

Lemma 1 (Logical Finiteness). If Ψ ⊆ ΦLTUMPL
is a finite set closed under

subformulae, and if Θ is the smallest stuffed superset of Ψ , then Θ is logically
finite. ¥

Definition 10 (Maximal Consistency). A finite set {ϕ1, . . . , ϕn} ⊆ ΦLTUMPL

is TUMPL-consistent iff 0TUMPL ¬(ϕ1& . . . &ϕn). An infinite set of formulae is
TUMPL-consistent iff all of its finite subsets are TUMPL-consistent. Γ ⊆ ΦLTUMPL

is a TUMPL-maximal consistent set iff it is TUMPL-consistent and for any ϕ /∈
Γ , Γ ∪ {ϕ} is TUMPL-inconsistent. ¥

Definition 11 (Canonical Model for Epistemic-Logical Part of
TUMPL). We define UC := (WC , RC , V C) as a canonical model for the
epistemic-logical part of TUMPL, where

– WC := {Γ ⊆ ΦLTUMPL
: Γ is TUMPL-maximal consistent},
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– for any Γ,∆ ∈ WC , RC(Γ,∆) iff for any ϕ ∈ ΦLTUMPL
, if Kϕ ∈ Γ , then

ϕ ∈ ∆.
– for any Γ ∈ WC ,

V C(Γ )(s) :=
{

true if s ∈ Γ ,
false otherwise.

¥

Definition 12 (U). We define U := (W, R, V ) by means of UC as follows:

– W is a fixed subset of WC , either WC itself or else {∆ : Γ =
∆ or RC∗(Γ,∆)} for some Γ ∈ WC , where RC∗ is the ancestral of RC .

– R and V are the restrictions of RC and V C to W.

¥

Definition 13 (Equivalence Class). Let Θ be a stuffed set of formulae that
are logically finite with respect to TUMPL. We define, for Γ,∆ ∈ W,

Γ ≡ ∆ iff Γ ∩ Θ = ∆ ∩ Θ.

Then ≡ is an equivalence relation on W. We write [Γ ] for the equivalence class
of Γ . ¥

Definition 14 (Filtration). We define U≡ := (W≡, R≡, V ≡) as a filtration of
U , where

– W≡ := {[Γ ] : Γ ∈ W},
– R≡ is a binary relation on W≡ such that

1. if R(Γ,∆), then R≡([Γ ], [∆]).
2. if R≡([Γ ], [∆]) and Kϕ ∈ Γ , then ϕ ∈ ∆.
3. V ≡ is a function such that for any s ∈ Θ,

V ≡([Γ ])(s) = V (Γ )(s).

¥

Thus, for any ξ ∈ W≡,

[[ϕ]]U
≡

ξ := {η : R≡(ξ, η) and (U≡, η) |=TUMPL ϕ}

is well-defined for any ϕ which does not contain SPR.

Lemma 2 (Lindenbaum). Every TUMPL-consistent set of formulae is a sub-
set of a TUMPL-maximal consistent set of formulae. ¥

Lemma 3 (Partial Truth). If ϕ ∈ Θ and ϕ does not contain SPR, then for
any Γ ∈ W,

(U≡, [Γ ]) |=TUMPL ϕ iff ϕ ∈ Γ.

¥

9



We wish to supplement U≡ with a preference space assignment ρ≡ so as
to obtain a structured Kripke model U≡

] for which Truth Lemma holds for all
formulae in Θ. Doing this contributes to solving the completeness problem of
TUMPL.

Definition 15 (F≡
ξ ). For any ξ ∈ W≡, we define F≡ as the set of all α ⊆ {η :

R≡(ξ, η)} such that for some value formula ϕ ∈ Θ, α = [[ϕ]]U
≡

ξ . ¥

Lemma 4 (Boolean Algebra). For any ξ ∈ W≡, F≡
ξ is a Boolean algebra

with {η : R≡(ξ, η)} as unit element. ¥

Definition 16 (Âξ). For any ξ ∈ W≡ we define α Âξ β to hold between ele-
ments α, β ∈ F≡

ξ iff there are value formulae ϕ,ψ ∈ Θ such that α = [[ϕ]]U
≡

ξ , β =
[[ψ]]U

≡

ξ and SPR(ϕ,ψ) ∈ Γ for any Γ ∈ ξ. ¥

Lemma 5 (Âξ and SPR). For any value formula ϕ, ψ ∈ Θ and any ξ ∈ W≡,
[[ϕ]]U

≡

ξ Âξ [[ψ]]U
≡

ξ iff, for any Γ ∈ ξ, SPR(ϕ,ψ) ∈ Γ . ¥

Lemma 6 (Irreflexivity, Intervality and Semitransitivity). For any ξ ∈
W≡, Âξ on F≡

ξ satisfies Irreflexivity, Intervality and Semitransitivity. ¥

Since we assumed that Θ is logically finite, W≡ is finite. Hence for any ξ ∈ W≡,
F≡

ξ is finite, so the next corollary follows from Lemma 4 and Lemma 6.

Corollary 2. For any ξ ∈ W≡, Corollary 1 is provable in (W≡
ξ ,F≡

ξ ,Âξ). ¥

Remark 6. Corollary 2, together with Corollary 1, can guarantee that Âξ in a
preference space of a canonical model for TUMPL is a threshold utility max-
imiser’s preference relation. ¥

Definition 17 (Canonical Model for TUMPL). We define U≡
] :=

(W≡, R≡, V ≡, ρ≡) as a canonical model for TUMPL, where ρ≡ is a preference
space assignment that assigns to each ξ ∈ W≡ (W≡

ξ ,F≡
ξ ,Âξ). ¥

Lemma 7 (Full Truth). For any ϕ ∈ Θ and any Γ ∈ W,

(U≡
] , [Γ ]) |=TUMPL ϕ iff ϕ ∈ Γ.

¥

Remark 7. This lemma is the announced improvement of Lemma 3. ¥

Theorem 4 (Completeness). For any ϕ ∈ ΦLTUMPL
, if |=TUMPL ϕ, then `TUMPL

ϕ. ¥

Proof. Suppose that 0TUMPL ϕ0. Then {¬ϕ0} is a TUMPL-consistent set. By
Lemma 2 {¬ϕ0} is a subset of a TUMPL-maximal consistent set Γ . Evidently
ϕ0 /∈ Γ . Let Ψ be the set of subformulae of TUMPL that is finite and let Θ
be the smallest stuffed extension of Ψ . By Lemma 1 Θ is logically finite with
respect to TUMPL. Let W be as mentioned above, either WC itself or else
{∆ : Γ = ∆ or RC∗(Γ,∆)} (where RC∗ is the ancestral of RC). By Lemma 7
(U≡

] , [Γ ]) 6|=TUMPL ϕ0. Therefore 6|=TUMPL ϕ0. ¥
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We can prove the decidability of TUMPL as follows.

Lemma 8 (Finite Model Property). TUMPL has the finite model property
that every non-theorem of TUMPL fails in a structured Kripke model for prefer-
ence with only finitely many elements. ¥

Theorem 5 (Decidability). TUMPL is decidable. ¥

Proof. Suppose that ϕ is not provable in TUMPL. By Lemma 8 ϕ fails in a
structured Kripke model U≡

] for preference with only finitely many elements.
If we take a domain W≡ with at most that number of elements, there are
only finitely many ways in which knowledge accessibility relations and truth
assignments can be defined, and there are also only finite many ways to define
the preference space assignment ρ≡. To decide, of a given relation Âξ, whether
it satisfies Irreflexivity, Intervality and Semitransitivity can be done in finitely
many steps. So we can find, in at most a finite number of steps, a counter-
model of the unprovable formula. In fact, we can compute an upper bound to
the number of steps needed. Thus TUMPL is decidable. ¥

4 Concluding Remarks

In this paper we have proposed a new version of complete and decidable extrinsic
preference logic–threshold utility maximiser’s preference logic (TUMPL) that can
solve the Intransitivity Problem and avoid the Fundamental Problem of Intrinsic
Preference.

This paper is only a part of a larger measurement-theoretic study. We are
now trying to construct such logics as dynamic epistemic preference logic ([16]),
dyadic deontic logic ([17]), a logic for goodness and badness ([18]) and a logic of
questions and answers by means of measurement theory.

Acknowledgements We would like to thank two anonymous reviewers for
their helpful comments.
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