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Abstract. We develop a unified perspective on modal logics for coop-
eration of agents with preferences. We prove embedding results between
classes of modal logics for cooperation, clarifying the relations between
them. We show how game– and social choice theoretical notions can be
interpreted on three different classes of models, and identify via invari-
ance results the expressive power the notions require. Explicit definability
results in extended modal languages are given for each notion and class
of models. Complexity results for extended modal logics are then used
to obtain upper bounds on the complexity (model checking and SAT) of
modal logics expressing the notions. This analysis shows how demand-
ing certain game– and social choice theoretical notions are in terms of
complexity and expressivity and how the choice of models (models with
coalitional power as a primitive vs. more complex power or action based
models) effects the expressive power and complexity required to express
the notions. We found e.g. opposite results for different classes of models
as to whether strict or non-strict stability notions are easier to express.

1 Introduction

We can think of cooperative and non-cooperative game theory (GT) as theories
of stability of states of interactive systems, and social choice theory (SCT) as
a theory of fairness and efficiency of such states. Further questions, e.g., from
computational SCT, are whether the system might loop or is guaranteed to
terminate. This paper contributes to the project of bringing the perspective of
descriptive complexity to the analysis of problems raised by the analysis of multi-
agent systems in terms of stability, efficiency and termination, and connected
concepts used to reason about cooperation in philosophy, social sciences and
computer science. We are concerned with studying the expressive power required
for logical languages to reason about interactive systems in terms of such notions.
Consequences in computational complexity can then be drawn, paving the way
to a descriptive perspective on the complexity of certain types of GT- and SCT-
reasoning. This requires an abstract perspective (as e.g. in [13]) and representing
the action or power structure together with the preferences of agents as simple
graphs, as it is done in modal logics (ML) for cooperation in multi-agent systems.
We aim towards a unified perspective on MLs for cooperation of agents with
preferences, both on a model-theoretic and syntactic level. Our objective is not
to propose a new ML but a unifying perspective on existing ones.



One such logic s for cooperation is Coalition Logic (CL) [12]. It uses formulas
〈[C〉] φ saying that coalition C has a joint strategy to ensure that φ. Another class
of cooperation logics aims to make coalitional power explicit by representing the
actions or strategies by which coalitions can achieve results [15, 4, 9]. Also the
concept preferences plays a crucial role in reasoning about strategic interaction
of (groups of) agents and has received much attention in ML [10].

Aim. First we want to determine the expressive power and complexity needed
for MLs expressing GT and SCT concepts. This depends on the models under
consideration. We analyze three classes of models for cooperation. Additionally,
we clarify the results by analyzing the relation between the models, and their
relation to existing frameworks. This comparison determines how demanding
different notions are on each class of models. Our results help to make design
choices when developing MLs for cooperation since we know the impact of certain
choices on the complexity and expressive power required to express GT and SCT
notions. Moreover, we clarify the relationship between complexity and expressive
power results of existing cooperation logics by embedding results.

Methodology. First, we focus on classes of models/logics for cooperation with
natural model theoretical properties. We consider different normal MLs and
extend them with agents’ preferences as total preorders over the states. We ana-
lyze the relations between them and to existing frameworks by giving embedding
results. Then we focus on a set of notions of interest for reasoning about cooper-
ation, and give their natural interpretations in each of the models. We determine
the expressive power required by these notions by checking under which opera-
tions these properties are invariant. Using characterization results for extended
MLs, we then obtain extended modal languages that can express the notions.
Among these, we choose those with the lowest expressive power and give explicit
definability results for the notions. Using known complexity results for extended
MLs, we also obtain upper bounds (UB) on the complexity of MLs (satisfiability
(SAT) and model checking (MC) (combined complexity)) expressing each notion.

Structure. Sec. 2 presents three classes of models for reasoning about cooper-
ation and the interpretations of extended modal languages on them. Sec. 3 has
our main results, first giving embedding results showing the relation between
the modal cooperation frameworks we consider, and their relation to frameworks
from the literature. Sec. 3.3 then gives invariance and explicit definability results
for several GT and SCT properties, and also upper bounds on the complexity
of MLs able to express them. Sec. 4 concludes. Proofs are in the full paper.

2 Three ways of modelling cooperation

The classes of models we consider correspond to models from the literature.
We take simplifying models or generalizations, avoiding additional complexity
due to constraints on the models. Thus, we can distinguish clearly how the
notions themselves are demanding and evaluate from a high level perspective how
appropriate the models are for reasoning about which aspects of cooperation.



First, coalition labelled transition systems [7] focus on preferences and their
interaction with cooperation, simplifying the computation of coalitional pow-
ers as they are directly represented as accessibility relations. The second class,
action-based coalitional models, represents coalitional power in terms of actions.
The third class, [5] power-based coalitional models, focuses on reasoning about
and computing coalitional power itself, encoding groups’ choices as partitions of
the state space. Preferences are total preorders (TPO) over the states.

2.1 The models

Our models are based on a finite set of agents N. j ranges over N. prop is the set
of propositional letters and nom a set of nominals, which is disjoint from prop.
A nominal is true in exactly one state. We let p ∈ prop and i ∈ nom.

Coalition-labelled transition systems. Sequential systems, Kripke models
with a relation for each coalition, can be used for reasoning about coalitional
power: a group has the power to move the system into exactly the states acces-
sible by its relation. These models generalize [13]’s conversion/preference games
and [14]’s models of coalitional interaction. The former take an abstract view
on game-theoretical models, based on the idea that GT is a theory of stable
vs. unstable states in interactive systems. Here, the focus is not on how coali-
tional power arises from individuals powers, but coalitional power is taken as a
primitive. Thus we can focus on the expressive power required by the notions
themselves and by reasoning about preferences.

Definition 1. A ℘(N)-LTS (Labeled Transition Systems indexed by coalitions in
℘(N)) is of the form 〈W, N, { C→ | C ⊆ N}, { ≤j | j ∈ N}, V 〉, where W 6= ∅,
N = {1, . . . , n} for some n ∈ IN, C→⊆ W ×W for each C ⊆ N, ≤j⊆ W ×W for
each j ∈ N, and V : prop ∪ nom→ ℘(W ), |V (i)| = 1 for each i ∈ nom.

W is a set of states. w C→ v means ‘coalition C can change the state from w into
v’. ≤ is a TPO. w ≤j v means ‘j finds v at least as good (a.l.a.g) as w’. w ∈ V (p)
means that p is true at w. As an example, a multi-agent resource allocation
setting as in [8] has a set R of resources. Let W = NR, i.e. the state space is the
set of all allocations. If a deal δ = (A,A′) involves exactly agents in C ⊆ N, add
(A,A′) to C→. Preference relations are defined in the obvious way. We can then
study resource allocation settings from an abstract perspective as graphs, and
find logical characterizations of relevant properties; e.g. the existence of loops.

Action-based coalitional models. In action-based models, coalitional power
comes from the agents’ abilities to perform actions, as in models in [4, 15].

Definition 2 (ABC). A N, (Aj)j∈N-ABC (action-based coalitional model indexed
by a finite set of agents N and a collection of finite sets of actions (Aj)j∈N)

is of the form 〈W, N, { j,a−−→ |j ∈ N, a ∈ Aj}, {≤j | j ∈ N}, V 〉, where W 6= ∅,



N = {1, . . . , n}, for some n ∈ IN; for each j ∈ N Aj is a finite set,
j,a−−→⊆W ×W

for each j ∈ N, a ∈ Aj, ≤j⊆ W ×W is a TPO for each j ∈ N, and V : prop ∪
nom → ℘(W ), |V (i)| = 1 for each i ∈ nom. For R ⊆ W × W , we write
R[w] := {v ∈W | wRv}.
j,a−−→ [w] ⊆ X means that at w, j can guarantee by doing a that the next state

is in X. This holds iff for some Y ,X ⊇ Y ∈ { j,a−−→ [w] | a ∈ Aj}; (Y is then
in the exact power of j at w). We let powers be additive: powers of coalitions
arise from individuals’ powers. W.l.o.g. let C = {1, . . . , |C|}. Then, at w, C ⊆ N

can force the next state to be in X iff for some Y , X ⊇ Y ∈ {
⋂
j∈C

j,aj−−→
[w] | (a1, . . . , a|C|) ∈ ×j∈CAj}; (Y is in the exact power of C at w).

An ABC model is reactive, if the following two conditions are fulfilled: 1. for any

(aj)j∈N ∈ ×j∈N (Aj), and for all w, (
⋂
j∈N

j,aj−−→ [w]) 6= ∅, i.e. for every collective
choice there is some next state. 2. agents always have available actions: for all

j ∈ N and w ∈ W , there is some aj ∈ Aj such that
j,aj−−→ [w] 6= ∅. We say that

an ABC model M is N-determined if for all w ∈ W , if there is some j ∈ N and

some aj ∈ Aj with v ∈ j,aj−−→ [w], then there is a profile (aj)j∈N ∈ ×j∈N(Aj)j with

(
⋂
j∈N

j,aj−−→ [w]) = {v}. ABCNR is the class of N-determined reactive ABC models.

Power-based coalitional models. These models generalize those of CL’s nor-
mal simulation NCL [5], and additionally have a preference relation for each agent.

Definition 3 (PBC-Model). A ℘(N)-PBC-model (power based coalitional model
indexed by a finite set of coalitions ℘(N)) is a tuple 〈W, N, {∼C | C ⊆
N}, FX, {≤j | j ∈ N}, V 〉, where W 6= ∅, each ∼C⊆ W × W is an equiva-
lence relation, FX : W → W is a total function, ≤j⊆ W ×W is a TPO for each
j ∈ N, and V : prop ∪ nom→ ℘(W ), |V (i)| = 1 for each i ∈ nom.

FX determines the system’s actual course: from w, we move to FX(w). ∼C
describes C’s lack of power: w ∼C v means that C cannot decide between w
and v and thus neither whether we move to FX(w) or FX(v). But C can choose
an equivalence class [w]∼C

, thus restricting the set of possible next states to
FX[[w]∼C

]. The models of NCL are PBC models with additional properties.

Definition 4 (NCL-Independence). For every C ⊆ N, ∼∅⊆ (∼C ◦ ∼C).

Definition 5 (NCL-Model). An NCL model is a PBC model satisfying the fol-
lowing conditions:

1. For all C,D ⊆ N, if D ⊆ C, then ∼C⊆∼D .
2. NCL-Independence.
3. ∼N= id = {(w, v) ∈W ×W | w = v}.

Alternating-time temporal models. An alternating transition system [1] is a
tuple 〈W, N, δ, V 〉 where W 6= ∅, δ : W ×N→ ℘(℘(W )) and satisfies Consistency :
for all C ⊆ ℘(N), w ∈W and (Xj)j∈C ∈ ×j∈Cδ(w, j) we have (

⋂
j∈C Xj) = ∅.



2.2 Extended modal languages

For each type of models, we introduce a language from which we will actually
use different fragments to define different GT and SCT notions.
Language interpreted on ℘(N)− LTS. α ::= ≤j | C | α ∩ α | α
φ ::= p | i | x | ¬φ | φ ∧ φ | 〈α〉φ | @iφ | @xφ | ↓x.φ where j ∈ N, C ∈ ℘(N)−{∅},
p ∈ prop, i ∈ nom, x ∈ svar. svar is a countable set of variables.

Semantics. Programs α are interpreted as relations. Formulas are interpreted
with an assignment g : svar→W . We skip booleans.

M, w, g  i iff w ∈ V (i)
M, w, g  x iff w = g(x)
R≤j

= ≤j
RC = C→
Rβ∩γ = Rβ ∩Rγ
Rβ = (W ×W ) \Rβ

M, w, g  〈α〉φ iff ∃v : wRαv
and M, v, g  φ

M, w, g, @iφ iffM, v, g  φ
for V (i) = {v}

M, w, g, @xφ iffM, g(x), g  φ
M, w, g,↓x.φ iffM, w, g[x := w]  φ

Language interpreted on ABC models. We now give the basic language for
ABC (the extension with hybrid and boolean ML formulas is as for ℘(N)− LTS).
More precisely, we have a family of languages indexed by collections (Aj)j∈N.

α ::= ≤j | aj | α−1 | α∩α | α φ ::= p | i | x |¬φ | φ∧φ | 〈α〉φ | @iφ | @xφ | ↓
x.φ where j ∈ N, aj ∈ Aj (the set of actions available to j) and p ∈ prop.

Raj
=

j,a−−→ Rα−1 = {(v, w)|wRαv}

We only give a few clauses to give the intuition.

M, w, g  〈aj〉φ iff ∃v : w
j,a−−→v and M, v, g  φ

M, w, g  〈≤j〉φ iff ∃v : w ≤j v and M, v, g  φ
M, w, g  〈α〉φ iff ∃v : wRαv and M, v, g  φ

We will make use of some shortcuts when writing big disjunctions or unions. For
C ⊆ N, we let C := ×j∈CAj . For an action profile aj = (aj)j∈N ∈ C we often
write

⋂
aj to stand for

⋂
j∈C aj . As an example, for the language indexed by

A1 = T1,M1, B1 and A2 = L2, R2 instead of writing [T1 ∩ L2]p ∨ [M1 ∩ L2]p ∨
[B1∩L2]p ∨ [T1∩R2]p ∨ [M1∩R2]p ∨ [B1∩R2]p, we often write

∨
aj∈{1,2}[∩aj ]p.

Language interpreted on PBC/NCL models. The language LNCL for PBC and
NCL is given as defined in [5], extended with hybrid and boolean modal logic
formulas as for ℘(N)− LTS.

α ::= ≤j α−1 α ∩ α φ ::= p i x ¬φ φ ∧ φ 〈C〉φ Xφ 〈α〉φ @iφ @xφ ↓x.φ

where j ∈ N (the set of agents), C ∈ ℘(N) and p ∈ prop.

M, w, g  〈C〉φ iff ∃v : w ∼C v and M, v, g  φ
M, w, g  Xφ iffM, FX(w), g  φ
M, w, g  〈≤j〉φ iff ∃v : w ≤j v and M, v, g  φ
M, w, g  〈α〉φ iff ∃v : wRαv and M, v, g  φ



Language interpreted on alternating transition systems. LATL is defined
as follows: φ ::= p |¬φ | φ∧φ | 〈〈C〉〉Xφ; p ranging over prop and C over ℘(N).
Now for finite sequences λ, let Last(λ) be the last element of λ, and W+ the set
of non-empty finite sequences. For j ∈ N, let a strategy for j be a function fj :
W+ → ℘(W ), such that for each finite sequence of states λ, fj(λ) ∈ δ(j, Last(λ)).
Let a collective strategy for C be FC = (fj)j∈C . out(w,FC) = {λ|λ[0] = w&∀i ≥
0(wi+1 ∈

⋂
j∈C fj(λi))} where λi is the prefix of λ of length i + 1. LATL is

interpreted as follows:M, w  〈〈C〉〉Xφ iff ∃FC : ∀λ ∈ out(w,FC) :M, λ[1]  φ.

(⊥) ` ¬〈〈C〉〉X⊥
(>) ` 〈〈C〉〉X>
(Σ) ` ¬〈〈∅〉〉X¬φ → 〈〈Σ〉〉Xφ
(S) ` (〈〈C1〉〉Xφ ∧ 〈〈C2〉〉Xψ) → 〈〈C1 ∪ C2〉〉X(φ ∧ ψ)

for C1 ∩ C2 = ∅
(〈〈C〉〉Xmon) ` φ → ψ implies ` 〈〈C〉〉Xφ → 〈〈C〉〉Xψ

Table 1. Axiomatization of ATL.

We introduced all the frameworks for which this paper investigates how de-
manding reasoning about cooperation is. The languages defined above will be
used to express SCT and GT notions on the respective models. We will also
clarify the relationship between ATL and classes of models we considered.

3 Comparing modal logics for cooperation

This section gives our main results from the analysis of the different ways of
modelling cooperation. First we determine the relation between the classes of
models; then we analyze how demanding different concepts from GT and SCT
are on them. We start by analyzing coalitional power as modelled in PBC, NCL and
CL and analyze relations between standard assumptions on coalitional power.

3.1 On the relation between PBC and NCL models

We say that C can force a set X at w iff at w C can guarantee that the next
state is in X; i.e. C can force X if some subset of X is in the exact power of
C at w. Some reasonable assumptions about the coalitional powers reflect the
independence of agents and are generally assumed in the literature [12, 5, 2]. We
consider two assumptions and show their relation. Let PC(w) be the collection
of exact powers of C at w; PC(w) contains the possible sets of states coalition C
can choose from at w. Let C = N\C and X = W \X. Independence of coalitions
says that for all choices of two disjoint coalitions there is a resulting next state.

Definition 6 (Independence of coalitions (IC)). ∀w, if C ∩D = ∅ then
∀X ∈ PC(w) ∀Y ∈ PD(w) : X ∩ Y 6= ∅.



The next condition says that the powers of C and C have to be consistent.

Definition 7 (Condition about complementary coalitions (CCC)). ∀w,
∀X, if ∃X ′ with X ⊇ X ′ ∈ PC(w), then there is no Y such that X ⊇ Y ∈ PC(w).

Coalition monotonicity says that if a coalition can achieve something then so
can all supersets of it.

Definition 8 (Coalition monotonicity (CM)). ∀w ∀X, if C ⊆ D and ∃Y
such that X ⊇ Y ∈ PC(w) , then ∃Z such that X ⊇ Z ∈ PD(w).

Fact 1. IC implies CCC. Fact 2. CCC + CM implies IC.
Note that on PBC models, CCC is actually the following:

∀w [∀X if ∃v(v ∈∼∅ [w] and ∼C [v] ⊆ X), then ¬∃t(t ∈∼∅ [w] and ∼C [t] ⊆ X)].

For NCL, [5] takes the condition of NCL-Independence (Def. 4).

Proposition 1. On PBC models, CCC is equivalent to NCL-Independence.

To sum up, we have shown that IC implies CCC; and together with CM, CCC
also implies IC. Moreover, IC and NCL-Independence are actually equivalent.

3.2 On the relation between NCL and CL

Let us analyze the relation between CL and its normal simulation NCL. First, we
briefly recall the semantics of CL. For the details we refer the reader to [12].

Definition 9 (CL-Model). A CL-model is a pair ((N,W,E), V ) where N is a set
of agents, S 6= ∅ is a set of states, E : W → (℘(N) → ℘(℘(W ))) is called an
effectivity structure. It satisfies the conditions of playability:

– Liveness: ∀C ⊆ N : ∅ /∈ E(C),
– Termination: ∀C ⊆ N : W ∈ E(C),
– N-maximality. ∀X ⊆W : (W \X /∈ E(∅)⇒ X ∈ E(N))
– Outcome monotonicity. ∀X ⊆ X ′ ⊆W,C ⊆ N : (X ∈ E(C)⇒ X ′ ∈ E(C)),
– Superadditivity. ∀X1, X2 ⊆ W,C1, C2 ⊆ N : ((C1 ∩ C2 = ∅ & X1 ∈
E(C1) & X2 ∈ E(C2))⇒ X1 ∩X2 ∈ E(C1 ∪ C2)).

V : prop→ ℘(W ) is a propositional valuation function.

The language LCL of CL is a standard modal language with a modality 〈[C〉]
for each C ⊆ N. The intended meaning of 〈[C〉] φ is “coalition C has the power to
achieve that φ”. The semantics is as follows: M,w � 〈[C〉] φ iff JφKM ∈ E(w)(C).
Let us now give a brief overview of NCL. In [5], a translation τ from LCL to LNCL is
given such that for all φ ∈ LCL, φ is satisfiable in an CL model iff τ(φ) is satisfiable
in an NCL model. τ is defined as follows: τ(p) = p, τ(〈[C〉] φ) = 〈∅〉[C]Xτ(φ).
The main result is then that φ is a theorem of CL iff τ(φ) is one of NCL. Via
completeness of CL and soundness of NCL, it follows that whenever τ(φ) is satisfied
in an NCL model, then there is a CL model that satisfies φ.

We give a constructive proof of their result to get a clear view of how the two
frameworks are related. We show how to translate pointed NCL models (M,w)
into CL models f(M,w) such that for all φ ∈ LCL, (M,w)  τ(φ) iff f(M,w)  φ.



Proposition 2 ([5]). For all φ ∈ LCL, if τ(φ) is satisfiable in a pointed model
M,w of NCL, then φ is satisfiable in a model f(M,w) of CL.

Proof. The full paper has a new, constructive proof of this result.

So, we have shown how to transform NCL models into corresponding CL models,
thus shedding some light on the relation between the two frameworks.
On the relation between ABC and ATL.

We give a translation tr : LATL → LABC such that for any φ ∈ LATL there
is a pointed ATL model M, w such that M, w  φ iff there is an ABC model
M′, v with M′, v  tr(φ). Given a pointed alternating transition systems M, w
with M = 〈W, N, δ, V 〉 and M, w  φ , we show how to construct an ABC model
TR(M) with M, w  φ iff TR(M), f(v)  tr(φ) where f is a function from the
domain of M to that of TR(M). First, we recall an important result we need:

Theorem 1 ([11]). Every satisfiable formula φ ∈ LATL is satisfiable in a finite
Concurrent Game System.

Concurrent Games Systems (CGS) are almost the same as alternating transition
systems and it is thus easy to give a transformation in both directions such that
satisfiability is invariant and the size of the target model is bounded:

Corollary 2 Every satisfiable formula φ ∈ LATL is satisfiable in a finite alter-
nating transition system.

Henceforth, we assume a finite domain of ATL models.
Transforming ATL models into ABC models. We give a procedural definition
of our transformation. Copy the state space W , the valuation V and the set of
agents N. For all pairs (w, i) ∈ W × N, δ(w, i) is finite. Label each element in
δ(w, i) with an action name a1

w,i, . . . , a
|δ(w,i)|
w,i . Let Label be this labeling function.

Now for each set of states Xw
i ∈ δ(w, i) and for each v ∈ Xw

i we add the pair

(w, v) to
i,ak

w,i−−−→ where akw,i is the appropriate label, i.e. akw,i = Label(w, i,Xw
i ).

We define a function f : Dom(M)→ Dom(TR(M)) mapping a state to itself.
Translating LATL into LABC. The translation is model-dependent. Given
an ATL model M, define for each j ∈ N a set of actions Aj =⋃
w∈|M|

⋃
Xw

j ∈δ(w,j)
Label(w, j,Xw

j ). Since |W | and δ(w, i) are finite, so is Aj .
The translation tr : LATL → LABC is recursively defined as follows:

tr(p) := p tr(¬φ) := ¬tr(φ)
tr(φ ∧ ψ) := tr(φ) ∧ tr(ψ)
tr(〈〈C〉〉Xφ) :=

∨
c∈×j∈CAj

[
⋂
aj∈|c| aj ]tr(φ), C 6= ∅

tr(〈〈∅〉〉Xφ) := [
⋃
j∈N

⋃
aj∈Aj

aj ]tr(φ)

Lemma 1. For all φ ∈ LATL if there exists a pointed ATL model M, w such that
M, w  φ then there exists a reactive ABCN model M′, v such that M ′, v  tr(φ)

Lemma 2. ∀φ ∈ LATL: if |=ATL φ then |=ABCNR tr(φ).

Proposition 3. For all φ ∈ LATL there exists a pointed ATL model M, w such
that M, w  φ iff there exists an ABCNR model M′, v such that M ′, v  tr(φ).



3.3 What GT/SCT notions demand: complexity and expressivity.

This section analyzes the complexity of describing and reasoning about inter-
active systems from an abstract perspective. We summarize the main results
that we obtained when investigating how much expressive power and complex-
ity is required for expressing each of the notions on each class of models. Our
analysis works towards establishing a link between descriptive complexity and
complexity results from a computational social choice and algorithmic game
theory perspective. As mentioned, we obtain our results by determining under
which operations on models (frames) certain properties from GT and SCT are
invariant (closed). For the definitions of these operations and the underlying
characterization results, the reader is referred to [3, 6]. Before we start let us
mention that all notions that we discuss are first-order and therefore their data
complexity is in LOGSPACE. In general termination notion are examples of no-
tions that would not be first-order-definable but definable in first-order logic
with least fixed points. We start with the simplest notions of coalitional power
and preferences.

Simple coalitional power and preference. The property of a coalition C
having the power to ensure that in the next state p will be the case turns out
to be invariant under bisimulations on ℘(N)− LTS and on PBC, NCL. Thus, it can
be expressed using the respective basic multi-modal languages, i.e. by 〈C〉p and
〈∅〉[C]Xp, respectively. Since the complexity of MC and SAT of these logics is
known, for ℘(N) − LTS and PBC, we thus get PSPACE and P as upper bounds
on SAT and MC of logics expressing the notion. For NCL, the respective upper
bounds are NEXPTIME and P. On ABC models on the other hand, saying that
a coalition can achieve something involves the intersection of the relations for
the actions for the agents. It is not invariant under bisimulation but under
∩-bisimulation; thus it can be expressed in the basic language with intersection:∨

aj∈C [
⋂

aj ]p. The upper bounds on SAT and MC that we obtain are then
again PSPACE and P, respectively.

Invariance Formula UB for MC, SAT

℘(N)− LTS Bisimulation 〈C〉p P,PSPACE
ABC ∩-Bisimulation

W
aj∈C [

T
aj ]p P,PSPACE

PBC Bisimulation 〈∅〉[C]Xp P,PSPACE
Table 2. “C can ensure that in the next state p is true.”

The simplest preference notion is that of an agent finding some state at least
as good in which p is true. Since, in all our models preferences are represented in
the same way and the preference fragments of the different languages we consider
are the same, we get the same results for this notion on all the models.
Coalition C can make agent j happy. The basic combination of coalitional
power and individual preference is the ability of a coalition to ensure that the



Invariance Formula UB for MC, SAT

℘(N)− LTS, ABC, PBC Bisimulation 〈≤j〉p P,PSPACE
Table 3. “j finds a state a.l.a.g. where p is true.”.

next state will be one that is at least as good for some agent. This property
turns out to be easiest to express on ℘(N)− LTS, since here it is invariant under
∩-bisimulation. For ABC and PBC on the other hand, we have to express that
the states accessible by one relation are a subset of the states accessible by
another relation. This is not invariant under any bisimulations but under taking
generated submodels and disjoint unions.

Formula MC,SAT

℘(N)LTS 〈C∩ ≤j〉> P,PSPACE
ABC

W
aj∈C(↓x.[

T
aj ](↓y.@x〈≤j〉y)) PSPACE, Π0

1

PBC ↓x.〈∅〉[C]X ↓y.@x〈≤j〉y PSPACE, Π0
1

Table 4. “C can move the system into a state a.l.a.g. for j”

Nash-stability. Nash-stability says that no single agent has the power to make
the system move into a state that is strictly better for him.

Formula UB for SAT

℘(N)− LTS
V

j∈N ↓x.[j∩ ≤j ]〈≤i〉x Π0
1

ABC
V

j∈N
V

aj∈Aj
↓x.〈aj〉〈≤〉x EXPTIME

PBC
V

j∈N ↓x.[∅]〈{j}〉X〈≤〉x EXPTIME
Table 5. “The current state is Nash stable.”

On all these models, Nash-stability is invariant under taking generated sub-
models and disjoint unions, and can be expressed in a modal logic with model
checking problem (combined complexity) in PSPACE.
Strong Nash-stability. Strong Nash-stability says that no single agent has the
power to make the system move into a state that is a.l.a.g. for him. Since we
take preferences as TPOs, if a state is strongly Nash-stable, it is Nash-stable.
On ℘(N)− LTS, strong Nash-stability is invariant under ∩-bisimulation. On ABC
and PBC only under GSM and DU. Comparing with the results for Nash-stability,
we can see that on ℘(N) − LTS strong Nash-stability is easier to express than
Nash-stability whereas on ABC and PBC we get opposite results.



Formula UB for SAT

℘(N)− LTS ∧j∈N[i∩ ≤j ]⊥ P,PSPACE
ABC ¬ ∨j∈N ∨aj∈Aj ↓x.[aj ]〈≤−1〉x PSPACE, Π0

1

PBC ¬∨j∈N ↓x.〈∅〉[{j}]X〈≤−1〉x PSPACE, Π0
1

Table 6. “The current state is strongly Nash stable.”

4 Conclusion

Our embeddings results show that action- and power-based models, together
with coalition-labelled transition systems, constitute three natural families of
cooperation logics with different primitives. The main open problem is to extend
action-based models to reason about transitive closure in order to simulate more
powerful logics such as ATL∗. The stability notions that we considered in this
work express that agents do not have an incentive to change the current state
within one step. In order to express more sophisticated stability notions for
interactive systems fixed point logics such as the modal µ-calculus are needed.

Our invariance results showed that many social choice-theoretical and game-
theoretical notions are not invariant under bounded morphic images, in many
cases it is only a matter of allowing the underlying logics to reason about the
intersection of two relations. Being able to express intersection is crucial when
reasoning about cooperation of agents in normal MLs.

Our definability results together with known upper bounds on combined
complexity of model checking and satisfiability have shown that whether strong
or weak stability or efficiency notions are less demanding crucially depends on
the choice of primitives. In action- and power-based models expressing the latter
type notions turns out to be easier, while in coalition labelled transition systems
the situation is just the opposite. This has to do with whether coalitional power
can be expressed in a simple way, and thus whether the intersection of relations
is sufficient or whether we need to express something like a subset relation.

Our definability results made use of very big conjunctions and disjunctions.
When taking conjunctions/disjunctions over all coalitions, they will be expo-
nentially related to the number of agents. The consequences we draw about the
upper bounds on the complexity of satisfiability or of combined complexity of
model checking is thus to be balanced by the fact that we generally use very
big conjunctions or disjunctions that might well be exponential if we take the
number of agents as a parameter for the complexity results.

Our invariance results indicate that our definability results are tight to some
extent. Indeed, this shows that within a large family of extended modal languages
with a natural model-theoretical characterization we could not improve on them.
It follows that upper bounds are accurate to some extent. Naturally, it is always
possible to design ad hoc logics to express exactly the notion of interest. It leads
us to the question of lower bounds. Can we use results from the computational
social choice literature to obtain lower bounds on the data complexity of model-
checking a logic that can express some notion? In general, the difficulty is that



usually the results from this literature take e.g. the number of resources (and/or
number of agents) as primitives, while the data complexity of a modal logic
is usually taken relatively to its state space, which is in general exponentially
bigger than the number of resources. It is natural to expect that the interesting
hardness results would be for logarithmic complexity classes.
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